BackgroundCirculating DNA (ctDNA) is acknowledged as a potential diagnostic tool for various cancers including colorectal cancer, especially when considering the detection of mutations. Certainly due to lack of normalization of the experimental conditions, previous reports present many discrepancies and contradictory data on the analysis of the concentration of total ctDNA and on the proportion of tumour-derived ctDNA fragments.MethodologyIn order to rigorously analyse ctDNA, we thoroughly investigated ctDNA size distribution. We used a highly specific Q-PCR assay and athymic nude mice xenografted with SW620 or HT29 human colon cancer cells, and we correlated our results by examining plasma from metastatic CRC patients.Conclusion/SignificanceFragmentation and concentration of tumour-derived ctDNA is positively correlated with tumour weight. CtDNA quantification by Q-PCR depends on the amplified target length and is optimal for 60–100 bp fragments. Q-PCR analysis of plasma samples from xenografted mice and cancer patients showed that tumour-derived ctDNA exhibits a specific amount profile based on ctDNA size and significant higher ctDNA fragmentation. Metastatic colorectal patients (n = 12) showed nearly 5-fold higher mean ctDNA fragmentation than healthy individuals (n = 16).
Altogether, the findings support further investigation for in vivo delivery of therapeutic siRNAs using Nx. Furthermore, this study indicates that anionic delivery systems may have potential for in vivo RNAi therapeutics.
Trappin-2/elafin is a novel innate immune factor that belongs to the serine protease inhibitor family and has known antibacterial, antifungal, and antiviral properties. In this study, we further investigated the anti-HIV activity of elafin using different cellular models and both X4– and R5–HIV-1 laboratory strains. We compared the antiviral activity of human recombinant elafin (rElafin) with three well-known antiretroviral drugs, AZT, tenofovir, and enfuvirtide. We have found that when the virus is pre-incubated with rElafin prior to the infection of the cells, HIV-1 replication is significantly inhibited. In target T cells and human peripheral blood mononuclear cells, maximal inhibition was achieved using submicromolar concentrations, and rElafin was found to be as potent as enfuvirtide, showing its potential for therapeutic application. We also show data on the mechanism of the antiviral activity of rElafin. We have demonstrated that rElafin neither binds to CD4, CXCR4, or CCR5 host cell receptors, nor to the viral glycoproteins gp120 and gp41. Furthermore, in our cell-to-cell fusion assays, in contrast to enfuvirtide, rElafin failed to block cell fusion. Altogether our results indicate that rElafin interferes with HIV replication at the early steps of its cycle but with a different mechanism of action than enfuvirtide. This study provides the first experimental evidence that elafin inhibits HIV replication in its natural target cells; therefore, elafin might have potential for its development as a new anti-HIV drug or microbicide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.