Abstract-Pulmonary hypertension is associated with diverse cardiac, pulmonary, and systemic diseases in neonates, infants, and older children and contributes to significant morbidity and mortality. However, current approaches to caring for pediatric patients with pulmonary hypertension have been limited by the lack of consensus guidelines from experts in the field. In a joint effort from the American Heart Association and American Thoracic Society, a panel of experienced clinicians and clinician-scientists was assembled to review the current literature and to make recommendations on the diagnosis, evaluation, and treatment of pediatric pulmonary hypertension. This publication presents the results of extensive literature reviews, discussions, and formal scoring of recommendations for the care of children with pulmonary hypertension. Key Words: AHA Scientific Statements ◼ bronchopulmonary dysplasia ◼ congenital diaphragmatic hernia ◼ congenital heart disease ◼ genetics ◼ persistent pulmonary hypertension of the newborn ◼ sickle cell disease © 2015 by the American Heart Association, Inc., and the American Thoracic Society.Circulation is available at http://circ.ahajournals.org DOI: 10.1161/CIR.0000000000000329 †Deceased. The American Heart Association and the American Thoracic Society make every effort to avoid any actual or potential conflicts of interest that may arise as a result of an outside relationship or a personal, professional, or business interest of a member of the writing panel. Specifically, all members of the writing group are required to complete and submit a Disclosure Questionnaire showing all such relationships that might be perceived as real or potential conflicts of interest.This document was approved by the American Heart Association Science Advisory and Coordinating Committee on May 12, 2015, the American Heart Association Executive Committee on July 22, 2015, and the American Thoracic Society on July 24, 2015.The online-only Data Supplement is available with this article at http://circ.ahajournals.org/lookup/suppl/doi:10.1161/CIR.0000000000000329/-/DC1. The American Heart Association requests that this document be cited as follows: Abman SH, Hansmann G, Archer SL, Ivy DD, Adatia I, Chung WK, Hanna BD, Rosenzweig EB, Raj JU, Cornfield D, Stenmark KR, Steinhorn R, Thébaud B, Fineman JR, Kuehne T, Feinstein JA, Friedberg MK, Earing M, Barst RJ, Keller RL, Kinsella JP, Mullen M, Deterding R, Kulik T, Mallory G, Humpl T, Wessel DL; on behalf of the American Heart Association Council on Cardiopulmonary, Critical Care, Perioperative and Resuscitation, Council on Clinical Cardiology, Council on Cardiovascular Disease in the Young, Council on Cardiovascular Radiology and Intervention, Council on Cardiovascular Surgery and Anesthesia, and the American Thoracic Society. Pediatric pulmonary hypertension: guidelines from the American Heart Association and American Thoracic Society. Circulation. 2015;132:2037-2099 Copies: This document is available on the World Wide Web site of the American Heart Associat...
Pulmonary hypertension (PH) is a rare disease in newborns, infants, and children that is associated with significant morbidity and mortality. In the majority of pediatric patients, PH is idiopathic or associated with congenital heart disease and rarely is associated with other conditions such as connective tissue or thromboembolic disease. Incidence data from the Netherlands has revealed an annual incidence and point prevalence of 0.7 and 4.4 for idiopathic pulmonary arterial hypertension and 2.2 and 15.6 for pulmonary arterial hypertension, respectively, associated with congenital heart disease (CHD) cases per million children. The updated Nice classification for PH has been enhanced to include a greater depth of CHD and emphasizes persistent PH of the newborn and developmental lung diseases, such as bronchopulmonary dysplasia and congenital diaphragmatic hernia. The management of pediatric PH remains challenging because treatment decisions continue to depend largely on results from evidence-based adult studies and the clinical experience of pediatric experts.
BACKGROUND Pulmonary arterial hypertension is a devastating disease with high mortality. Familial cases of pulmonary arterial hypertension are usually characterized by autosomal dominant transmission with reduced penetrance, and some familial cases have unknown genetic causes. METHODS We studied a family in which multiple members had pulmonary arterial hypertension without identifiable mutations in any of the genes known to be associated with the disease, including BMPR2, ALK1, ENG, SMAD9, and CAV1. Three family members were studied with whole-exome sequencing. Additional patients with familial or idiopathic pulmonary arterial hypertension were screened for the mutations in the gene that was identified on whole-exome sequencing. All variants were expressed in COS-7 cells, and channel function was studied by means of patch-clamp analysis. RESULTS We identified a novel heterozygous missense variant c.608 G→A (G203D) in KCNK3 (the gene encoding potassium channel subfamily K, member 3) as a disease-causing candidate gene in the family. Five additional heterozygous missense variants in KCNK3 were independently identified in 92 unrelated patients with familial pulmonary arterial hypertension and 230 patients with idiopathic pulmonary arterial hypertension. We used in silico bioinformatic tools to predict that all six novel variants would be damaging. Electrophysiological studies of the channel indicated that all these missense mutations resulted in loss of function, and the reduction in the potassium-channel current was remedied by the application of the phospholipase inhibitor ONO-RS-082. CONCLUSIONS Our study identified the association of a novel gene, KCNK3, with familial and idiopathic pulmonary arterial hypertension. Mutations in this gene produced reduced potassium-channel current, which was successfully remedied by pharmacologic manipulation. (Funded by the National Institutes of Health.)
SummaryBackgroundMutations in the gene encoding the bone morphogenetic protein receptor type II (BMPR2) are the commonest genetic cause of pulmonary arterial hypertension (PAH). However, the effect of BMPR2 mutations on clinical phenotype and outcomes remains uncertain.MethodsWe analysed individual participant data of 1550 patients with idiopathic, heritable, and anorexigen-associated PAH from eight cohorts that had been systematically tested for BMPR2 mutations. The primary outcome was the composite of death or lung transplantation. All-cause mortality was the secondary outcome. Hazard ratios (HRs) for death or transplantation and all-cause mortality associated with the presence of BMPR2 mutation were calculated using Cox proportional hazards models stratified by cohort.FindingsOverall, 448 (29%) of 1550 patients had a BMPR2 mutation. Mutation carriers were younger at diagnosis (mean age 35·4 [SD 14·8] vs 42·0 [17·8] years), had a higher mean pulmonary artery pressure (60·5 [13·8] vs 56·4 [15·3] mm Hg) and pulmonary vascular resistance (16·6 [8·3] vs 12·9 [8·3] Wood units), and lower cardiac index (2·11 [0·69] vs 2·51 [0·92] L/min per m2; all p<0·0001). Patients with BMPR2 mutations were less likely to respond to acute vasodilator testing (3% [10 of 380] vs 16% [147 of 907]; p<0·0001). Among the 1164 individuals with available survival data, age-adjusted and sex-adjusted HRs comparing BMPR2 mutation carriers with non-carriers were 1·42 (95% CI 1·15–1·75; p=0·0011) for the composite of death or lung transplantation and 1·27 (1·00–1·60; p=0·046) for all-cause mortality. These HRs were attenuated after adjustment for potential mediators including pulmonary vascular resistance, cardiac index, and vasoreactivity. HRs for death or transplantation and all-cause mortality associated with BMPR2 mutation were similar in men and women, but higher in patients with a younger age at diagnosis (p=0·0030 for death or transplantation, p=0·011 for all-cause mortality).InterpretationPatients with PAH and BMPR2 mutations present at a younger age with more severe disease, and are at increased risk of death, and death or transplantation, compared with those without BMPR2 mutations.FundingCambridge NIHR Biomedical Research Centre, Medical Research Council, British Heart Foundation, Assistance Publique-Hôpitaux de Paris, INSERM, Université Paris-Sud, Intermountain Research and Medical Foundation, Vanderbilt University, National Center for Advancing Translational Sciences, National Institutes of Health, National Natural Science Foundation of China, and Beijing Natural Science Foundation.
Background Heritable and idiopathic pulmonary arterial hypertension (PAH) are phenotypically identical and associated with mutations in several genes related to TGF beta signaling, including bone morphogenetic protein receptor type 2 (BMPR2), activin receptor-like kinase 1 (ALK1), endoglin (ENG), and mothers against decapentaplegic 9 (SMAD9). Approximately 25% of heritable cases lack identifiable mutations in any of these genes. Methods and Results We used whole exome sequencing to study a three generation family with multiple affected family members with PAH but no identifiable TGF beta mutation. We identified a frameshift mutation in Caveolin-1 (CAV1), which encodes a membrane protein of caveolae abundant in the endothelium and other cells of the lung. An independent de novo frameshift mutation was identified in a child with idiopathic PAH. Western blot analysis demonstrated a reduction in caveolin-1 protein, while lung tissue immunostaining studies demonstrated a reduction in normal caveolin-1 density within the endothelial cell layer of small arteries. Conclusions Our study represents successful elucidation of a dominant Mendelian disorder using whole exome sequencing. Mutations in CAV1 are associated in rare cases with PAH. This may have important implications for pulmonary vascular biology as well as PAH-directed therapeutic development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.