Background. Recent reports point to a nuclear origin of Alzheimer’s disease (AD). Aged postmitotic neurons try to repair their damaged DNA by entering the cell cycle. This aberrant cell cycle re-entry involves chromatin modifications where nuclear Tau and the nuclear lamin are involved. The purpose of this work was to elucidate their participation in the nuclear pathological transformation of neurons at early AD. Methodology. The study was performed in hippocampal paraffin embedded sections of adult, senile, and AD brains at I-VI Braak stages. We analyzed phospho-Tau, lamins A, B1, B2, and C, nucleophosmin (B23) and the epigenetic marker H4K20me3 by immunohistochemistry. Results. Two neuronal populations were found across AD stages, one is characterized by a significant increase of Lamin A expression, reinforced perinuclear Lamin B2, elevated expression of H4K20me3 and nuclear Tau loss, while neurons with nucleoplasmic Lamin B2 constitute a second population. Conclusions. The abnormal cell cycle reentry in early AD implies a fundamental neuronal transformation. This implies the reorganization of the nucleo-cytoskeleton through the expression of the highly regulated Lamin A, heterochromatin repression and building of toxic neuronal tangles. This work demonstrates that nuclear Tau and lamin modifications in hippocampal neurons are crucial events in age-related neurodegeneration.
ObjectiveThis study characterizes the expression of tau (p‐tau) and α‐synuclein (α‐syn) by immunohistochemistry in the skin of three different populations: healthy control (HC), Parkinson disease (PD), and progressive supranuclear paralysis (PSP) subjects, with the purpose of finding a biomarker that could differentiate between subjects with PD and PSP.Material and MethodsWe evaluated the presence of p‐tau and α‐syn in a pilot study in the skin of three distinct groups of patients: 17 healthy subjects, 17 patients with PD, and 10 patients with PSP. Four millimeters punch biopsies were obtained from the occipital area and analyzed by immunohistochemistry using antibodies against α‐syn and phosphorylated species of tau. PHF (paired helical filaments) antibody identifies p‐tau in both normal and pathological conditions and AT8 recognizes p‐tau characteristic of pathological conditions. Differences between the three groups were assessed by quantification of immunopositive areas in the epidermis.ResultsThe immunopositivity pattern of p‐tau and α‐syn was significantly different among the three groups. Healthy subjects showed minimal staining using AT8 and α‐syn. The PD group showed significantly higher α‐syn and AT8 immunopositivity, while the PSP group only expressed higher AT8 immunopositivity than HCs.ConclusionThese data suggest that the skin reflects brain pathology. Therefore, immunohistochemical analysis of p‐tau and α‐syn in the skin can be useful for further characterization of PD and PSP.
Background The misfolding and prion‐like propagation of the protein α‐synuclein (α‐syn) is the leading molecular signature in Parkinson's disease (PD). There is a significant coincidence of PD and melanoma that may suggest a shared pathophysiology. This study compared the presence of α‐syn in neural crest‐derived tissues, such as nevi, melanoma, skin tags, and skin biopsies from patients with PD and healthy controls. Methods Biopsies from participants with PD were obtained from patients from a tertiary referral center for dermatology and neurology in Mexico and a private dermatopathology center in Florida between January 2015 and March 2016. Biopsies from 7 patients with melanoma, 15 with nevi, 9 with skin tags, 8 with PD, and 9 skin biopsies from healthy volunteers were analyzed for immunohistochemical determination of α‐syn and tyrosinase. All analyses were performed by pathologists who were blinded with respect to the clinical diagnosis. Results In healthy controls, positive α‐syn status was restricted to scattered cells in the basal layer of the epidermis and accounted for 1 ± 0.8% of the analyzed area. In patients with PD, there was increased staining for α‐syn PD (3.3 ± 2.3%), with a higher percentage of positive cells in nevi (7.7 ± 5.5%) and melanoma (13.6 ± 3.5%). There was no increased staining in skin tags compared with healthy controls. Conclusion Patients with PD and melanoma have increased staining for α‐syn in their skin. The authors propose that neurons and melanocytes, both derived from neuroectodermal cells, may share protein synthesis and regulation pathways that become dysfunctional in PD and melanoma.
Coronary blood flow applied to the endothelial lumen modulates parenchymal functions via paracrine effectors, but the mechanism of flow sensation is unknown. We and others have demonstrated that coronary endothelial luminal membrane (CELM) oligosaccharides and lectins are involved in flow detection, and we proposed that cardiac effects of coronary flow result from a reversible flow-modulated lectin-oligosaccharide interaction. Recently, glycosylated and amiloride-sensitive Na(+)/Ca(++) channels (ENaCs) have been proposed to be involved in the flow-induced endothelial responses. Because N-acetylglucosamine (GlcNac) is one of the main components of glycocalyx oligosaccharides (i.e., hyaluronan [-4GlcUAbeta1-3GlcNAcbeta1-](n)), the aim of this article is to isolate and define CELM GlcNac-binding lectins and determine their role in cardiac and vascular flow-induced effects. For this purpose, we synthesized a 460-kDa GlcNac polymer (GlcNac-Pol) with high affinity toward GlcNac-recognizing lectins. In the heart, intracoronary administration of GlcNac-Pol upon binding to CELM diminishes the flow-dependent positive inotropic and dromotropic effects. Furthermore, GlcNac-Pol was used as an affinity probe to isolate CELM GlcNac-Pol-recognizing lectins and at least 35 individual lectinic peptides were identified, one of them the beta-ENaC channel. Some of these lectins could participate in flow sensing and in GlcNac-Pol-induced effects. We also adopted a flow-responsive and well-accepted model of endothelial-parenchymal paracrine interaction: isolated blood vessels perfused at controlled flow rates. We established that flow-induced vasodilatation (FIV) is blocked by endothelial luminal membrane (ELM) bound GlcNac-Pol, nitro-l-arginine methyl ester and indomethacin, amiloride, and hyaluronidase. The effect of hyaluronidase was reversed by infusion of soluble hyaluronan. These results indicate that GlcNac-Pol inhibits FIV by competing and displacing intrinsic hyaluronan bound to a lectinic structure such as the amiloride-sensitive ENaC. Nitric oxide and prostaglandins are the putative paracrine mediators of FIV.
We evaluated how low-level (3 ppm) subchronic inorganic arsenic (iAs) exposure from prenatal developmental stages until adult life affects glucose homeostasis. Biochemical parameters of glucose and lipid metabolism, pancreatic insulin and glycosylated haemoglobin were determined in 4-month-old female offspring of adult Wistar rats. Pancreatic histology was also performed. Statistical comparisons between control and iAs-treated groups were performed by unpaired two-tailed Student's t-test. Statistical significance was set at p<0.05. We found that iAs treatment resulted in an impaired glucose tolerance test, suggestive of impaired glucose metabolism. This group was found to have hyperglycaemia and high levels of HOMA-IR, glycosylated haemoglobin, cholesterol and pancreatic insulin compared to control rats. However, plasma insulin, triglycerides and high-density lipoprotein cholesterol were not different from control rats. Moreover, β-cell damage found in iAs-treated rats consisted of cells with a nucleus with dense chromatin and predominance of eosinophilic cytoplasm, as well as changes in the pancreatic vasculature. The current study provided evidence that subchronic iAs exposure at 3 ppm from prenatal developmental stages to adult life resulted in damage to pancreatic β cells, affected insulin secretion and demonstrated altered glucose homeostasis, thus supporting a causal association between iAs exposure and diabetes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.