Read-across applies the principle of similarity to identify the most similar substances to represent a given target substance in data-poor situations. However, differences between the target and the source substances exist. The present study aims to screen and assess the effect of the key components in a molecule which may escape the evaluation for read-across based only on the most similar substance(s) using a new open-access software: Virtual Extensive Read-Across (VERA). VERA provides a means to assess similarity between chemicals using structural alerts specific to the property, pre-defined molecular groups and structural similarity. The software finds the most similar compounds with a certain feature, e.g., structural alerts and molecular groups, and provides clusters of similar substances while comparing these similar substances within different clusters. Carcinogenicity is a complex endpoint with several mechanisms, requiring resource intensive experimental bioassays and a large number of animals; as such, the use of read-across as part of new approach methodologies would support carcinogenicity assessment. To test the VERA software, carcinogenicity was selected as the endpoint of interest for a range of botanicals. VERA correctly labelled 70% of the botanicals, indicating the most similar substances and the main features associated with carcinogenicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.