Azo dyes present in industrial effluents represent a hurdle that regular treatments cannot overcome. In this study, the application of ozone and a catalytic (iron oxide) ozone treatment were proposed as a means of degrading aqueous sunset yellow dye. In order to understand the factors involved, a rotatable central composite design was applied using the variables time, initial dye concentration (C 0), pH, ozone inlet concentration (O 3), and mass of catalyst, which varied in each case. All variables were significant in colour removal. Extremes in pH, lower C 0 , and higher ozone concentrations are conditions that favour dye degradation. A complete colour loss occurred for certain combinations of these parameters. The application of iron oxide as a catalyst did not present a satisfactory improvement in the reaction rate. Chemical oxygen demand and total organic carbon showed minimum values of 80% and 78%, respectively, for the worst experimental conditions (pH 7.0, C 0 of 45 mg • L −1 , and 5 g O 3 • m −3), while their values were 88% and 83% for the best conditions applied. There was no immobilization of Artemia salina nauplii, even for the experimental run where the maximum concentration of dye of the set was used (45 mg dye • L −1). Ozonation is a promising alternative in the degradation of aqueous sunset yellow dye, being favoured in acidic or basic media, which is especially important since food effluents usually present low pH and show low toxicity. The mathematical model proposed can be useful in the design of wastewater treatment processes.
This work reports the study of the potential application of Zn/TiO2 catalysts, obtained by the solgel method, in processes of environmental decontamination through the reactions of photodegradation of textile dye, followed by electrospray mass spectrometry. The catalysts synthesis was performed according to a 2² factorial design with repetition at the central point. The characterization techniques used were: N2 adsorption measurements (BET method), scanning electron microscopy with energy dispersive X-ray (MEV/EDS), X-ray diffraction and point of zero charge (PZC). The photocatalytic tests were performed in batch in the presence of sunlight, and to evaluate the degradation kinetics study, a rapid direct injection electrospray mass spectrometry (DI-ESI-MS) method has been developed. By the photocatalytic tests, the calcination temperature of 400 °C has shown the best results of discoloration for the reactive Orange-122 dye (99.76%) in a reaction time of 2h. The discoloration kinetics were a pseudo-first order, and a statistical analysis was performed to investigate the effects of the variables and to optimize the conditions of discoloration to the dye. After the reactional time of 2 h, an ion of m/z 441.5 was detected by ESI-MS, indicating that the photocatalytic process was effective for the degradation of the dye to secondary compounds.
The most common methods currently used for the removal of waste glycerol, monoglycerides and diglycerides remaining after phase separation during biodiesel production involve wet processes. These procedures are not environmentally viable because they require large volumes of water and thus generate significant quantities of effluent. In this study, adsorption was employed to replace this purification step. Some commercial activated carbons were tested along with adsorbents chemically modified with HNO3. A kinetics study was conducted at 30 degrees C and adsorption isotherms were obtained at 20 degrees C, 30 degrees C and 40 degrees C. The results indicated that the adsorption of glycerol increased with the use of chemically-modified activated carbon, showing that pH has a strong influence on glycerol adsorption. The pseudo-first-order kinetic model provided the best fit with the experimental data for the monoglycerides while the pseudo-second-order model showed a better fit for the glycerol and diglycerides. The Freundlich model had the best fit with experimental data on the adsorption equilibrium for all temperatures. The thermodynamic study indicated that the adsorption process is endothermic and thus adsorption is favoured by increasing the temperature. The adsorption process using chemically-modified activated carbon was therefore very effective for the removal of waste glycerol resulting from biodiesel production, which is of considerable significance given the legal limits imposed.
O objetivo deste trabalho foi desenvolver bebida fermentada à base de extrato hidrossolúvel de quinoa, determinar sua composição centesimal e realizar a avaliação sensorial e microbiológica do produto. Para o processo fermentativo foram utilizadas cepas desidratadas de Streptococcus thermophilus e Lactobacillus delbrueckii subsp. bulgaricus. O extrato hidrossolúvel de quinoa fermentado sem a adição de polpa de fruta e sacarose foi submetido às determinações de umidade, cinzas, lipídios, proteínas e carboidratos. Realizou-se o teste de aceitação e a avaliação microbiológica dos produtos, incluindo as determinações de coliformes totais, coliformes a 45ºC e Salmonella. O produto desenvolvido alcançou boa aceitação e atendeu aos padrões microbiológicos da legislação brasileira vigente. Concluiu-se que a bebida fermentada de extrato hidrossolúvel de quinoa constitui boa alternativa para a substituição de bebidas lácteas e à base de soja. PALAVRAS-CHAVE
This paper reports a study on the adsorption of the dye sunset yellow, present in an aqueous synthetic solution and a real effluent from a soft drink plant, onto granular-activated carbon derived from coconut husks, using a batch system. The kinetic equilibrium was investigated using two different dye concentrations (10(2) and 10(3) mg L(-1)) at 25 degrees C and 150 rpm. The adsorption isotherms and thermodynamics parameters were evaluated at 25 degrees C, 35 degrees C, 45 degrees C and 55 degrees C, using the synthetic and real effluents (5-10(3) mg L(-1)). Experimental data showed that the adsorbent was effective in the removal of sunset yellow dye and the contact time required to attain the adsorption equilibrium did not exceed 10 h. The adsorption capacity was not influenced within a wide range of pH values (1-12), although at high dye concentrations it increased with increasing temperature for both the synthetic and real effluents. The Redlich-Peterson isotherm best represented the equilibrium data of the system. The negative values obtained for DeltaG0 and DeltaH0 suggest that this adsorption process is spontaneous, favourable, and exothermic. The positive values for DeltaS0 indicate an increase in the entropy at the solid/liquid interface. Based on the results of this study, adsorption appears to be a promising method for the removal of sunset yellow azo dye from effluent generated at soft drink plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.