We investigated the influence of four different behavioral states on tactile responses recorded simultaneously via arrays of microwires chronically implanted in the vibrissal representations of the rat ventral posterior medial nucleus (VPM) of the thalamus and the primary somatosensory cortex (SI). Brief (100 microsecond) electrical stimuli delivered via a cuff electrode to the infraorbital nerve yielded robust sensory responses in VPM and SI during states of quiet immobility. However, significant reductions in tactile response magnitude and latency were observed in VPM and SI during large-amplitude, exploratory movements of the whiskers (at approximately 4-6 Hz). During small-amplitude, 7-12 Hz whisker-twitching movements, a significant reduction in SI response magnitude and an increase in VPM and SI response latencies were observed as well. When pairs of stimuli with interstimulus intervals <100 msec were delivered during quiet immobility, the response to the second stimulus in the pair was reduced and occurred at a longer latency compared with the response to the first stimulus. In contrast, during large-amplitude whisker movements and general motor activity, paired stimuli yielded similar sensory responses at interstimulus intervals >25 msec. These response patterns were correlated with the amount and duration of postexcitatory firing suppression observed in VPM and SI during each of these behaviors. On the basis of these results, we propose that sensory responses are dynamically modulated during active tactile exploration to optimize detection of different types of stimuli. During quiet immobility, the somatosensory system seems to be optimally tuned to detect the presence of single stimuli. In contrast, during whisker movements and other exploratory behaviors, the system is primed to detect the occurrence of rapid sequences of tactile stimuli, which are likely to be generated by multiple whisker contacts with objects during exploratory activity.
Fanselow EE, Richardson KA, Connors BW. Selective, statedependent activation of somatostatin-expressing inhibitory interneurons in mouse neocortex. J Neurophysiol 100: 2640 -2652, 2008. First published September 17, 2008 doi:10.1152/jn.90691.2008. The specific functions of subtypes of cortical inhibitory neurons are not well understood. This is due in part to a dearth of information about the behaviors of interneurons under conditions when the surrounding circuit is in an active state. We investigated the firing behavior of a subset of inhibitory interneurons, identified using mice that express green fluorescent protein (GFP) in a subset of somatostatin-expressing inhibitory cells ("GFP-expressing inhibitory neuron" [GIN] cells). The somata of the GIN cells were in layer 2/3 of somatosensory cortex and had dense, layer 1-projecting axons that are characteristic of Martinotti neurons. Interestingly, GIN cells fired similarly during a variety of diverse activating conditions: when bathed in fluids with low-divalent cation concentrations, when stimulated with brief trains of local synaptic inputs, when exposed to group I metabotropic glutamate receptor agonists, or when exposed to muscarinic cholinergic receptor agonists. During these manipulations, GIN cells fired rhythmically and persistently in the theta-frequency range (3-10 Hz). Synchronous firing was often observed and its strength was directly proportional to the magnitude of electrical coupling between GIN cells. These effects were cell type specific: the four manipulations that persistently activated GIN cells rarely caused spiking of regularspiking (RS) pyramidal cells or fast-spiking (FS) inhibitory interneurons. Our results suggest that supragranular GIN interneurons form an electrically coupled network that exerts a coherent 3-to 10-Hz inhibitory influence on its targets. Because GIN cells are more readily activated than RS and FS cells, it is possible that they act as "first responders" when cortical excitatory activity increases.
Thalamic neurons have two firing modes: tonic and bursting. It was originally suggested that bursting occurs only during states such as slow-wave sleep, when little or no information is relayed by the thalamus. However, bursting occurs during wakefulness in the visual and somatosensory thalamus, and could theoretically influence sensory processing. Here we used chronically implanted electrodes to record from the ventroposterior medial thalamic nucleus (VPM) and primary somatosensory cortex (SI) of awake, freely moving rats during different behaviors. These behaviors included quiet immobility, exploratory whisking (large-amplitude whisker movements), and whisker twitching (small-amplitude, 7-to 12-Hz whisker movements). We demonstrated that thalamic bursting appeared during the oscillatory activity occurring before whisker twitching movements, and continued throughout the whisker twitching. Further, thalamic bursting occurred during whisker twitching substantially more often than during the other behaviors, and a neuron was most likely to respond to a stimulus if a burst occurred Ϸ120 ms before the stimulation. In addition, the amount of cortical area activated was similar to that during whisking. However, when SI was inactivated by muscimol infusion, whisker twitching was never observed. Finally, we used a statistical technique called partial directed coherence to identify the direction of influence of neural activity between VPM and SI, and observed that there was more directional coherence from SI to VPM during whisker twitching than during the other behaviors. Based on these findings, we propose that during whisker twitching, a descending signal from SI triggers thalamic bursting that primes the thalamocortical loop for enhanced signal detection during the whisker twitching behavior. I t has been demonstrated that thalamic relay neurons have two distinct modes of firing. These are the tonic firing mode, in which neurons fire single action potentials, and the bursting mode, in which cells fire bursts of two to seven action potentials (1, 2). During the tonic firing mode, cells respond to stimuli with individual spikes that can closely follow incoming activity (3-5). In contrast, during the burst mode, cells respond to incoming stimuli with bursts that do not directly resemble the afferent activity because the bursts are all-or-nothing events, and there is a long refractory period between bursts (4, 5).It was originally thought that the tonic mode was associated with behavioral states, such as wakefulness and sleep, during which afferent stimuli are readily relayed by the thalamus (3, 6-8). In contrast, the bursting mode was thought to occur only during times when no afferent information was, in theory, transmitted by the thalamus (refs. 1, 9, and 10; see ref. 11 for review), such as during slow-wave sleep, barbiturate anesthesia, and pathological conditions such as seizure activity. However, it has recently been demonstrated that thalamic bursting can occur during awake states as well, in multiple species (12-...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.