Objective-Alterations in reward-related brain function and phenomenological aspects of positive affect are increasingly examined in the development of major depressive disorder. The authors tested differences in reward-related brain function in healthy and depressed adolescents, and the authors examined direct links between reward-related brain function and positive mood that occurred in realworld contexts.Method-Fifteen adolescents with major depressive disorder and 28 adolescents with no history of psychiatric disorder, ages 8-17 years, completed a functional magnetic resonance imaging guessing task involving monetary reward. Participants also reported their subjective positive affect in natural environments during a 4-day cell-phone-based ecological momentary assessment.Results-Adolescents with major depressive disorder exhibited less striatal response than healthy comparison adolescents during reward anticipation and reward outcome, but more response in dorsolateral and medial prefrontal cortex. Diminished activation in a caudate region associated with this depression group difference was correlated with lower subjective positive affect in natural environments, particularly within the depressed group.Conclusions-Results support models of altered reward processing and related positive affect in young people with major depressive disorder and indicate that depressed adolescents' brain response to monetary reward is related to their affective experience in natural environments. Additionally, these results suggest that reward-processing paradigms capture brain function relevant to real-world positive affect.Depression that begins in childhood or adolescence disrupts functioning in academic, family, peer, and affective contexts (1). A central issue in the pathophysiology of depression is how affective brain systems are disrupted in ways associated with mood correlates of the disorder. From a developmental affective neuroscience perspective, it is important to consider not only neural systems underpinning negative affect but also positive affect systems, because diminished pleasant mood, decreased motivation for rewarding experiences, and unusual dopamine system function may represent core aspects of depression, particularly early in its course (2,3). Understanding early developmental changes in neural reward systems in depression could provide insights relevant to treatments while brain development is underway (4) because treatments provided early in development could have the potential for more Address correspondence and reprint requests to Dr. Forbes, University of Pittsburgh School of Medicine, Western Psychiatric Institute and Clinic, 3811 O'Hara St., Loeffler 319, Pittsburgh, PA 15213; E-mail: forbese@upmc.edu (e-mail). Dr. Birmaher has participated in forums sponsored by companies such as Solvay and Abcomm and has lectured at a Solvay-sponsored meeting and participated in the following forums: Jazz Pharmaceuticals, Solvay Pharmaceuticals, and Abcomm. All remaining authors report no competing interes...
COVID-19 presents significant social, economic, and medical challenges. Because COVID-19 has already begun to precipitate huge increases in mental health problems, clinical psychological science must assert a leadership role in guiding a national response to this secondary crisis. In this paper, COVID-19 is conceptualized as a unique, compounding, multidimensional stressor that will create a vast need for intervention and necessitate new paradigms for mental health service delivery and training. Urgent challenge areas across developmental periods are discussed, followed by a review of psychological symptoms that likely will increase in prevalence and require innovative solutions in both science and practice. Implications for new research directions, clinical approaches, and policy issues are discussed to highlight the opportunities for clinical psychological science to emerge as an updated, contemporary field capable of addressing the burden of mental illness and distress in the wake of COVID-19 and beyond.
Adolescence is a time of dramatic changes including rapid physical growth, the onset of sexual maturation, the activation of new drives and motivations, and a wide array of social and affective changes and challenges. This review focuses on behavioral changes in this interval and is organized by the claim that a key set of these adolescent changes are part of a more general re-orientation of social behavior. More specifically we hypothesize that pubertal maturation is associated with the activation of social and motivational tendencies, which in turn influence behavior and emotion in adolescence depending upon interactions with social context. We focus on evidence for two examples of these motivational changes: 1) increases in sensation seeking (motivational tendency to want to experience high-intensity, exciting experiences) and 2) stronger natural interest in—and pursuit of—contact with peers and potential romantic partners. We consider how these motivational changes contribute to the broader social re-orientation of adolescence, including exploration of social experiences, the development of skills and knowledge relevant to taking on adult social roles, individuation from family, and the establishment of an individual identity, all of which represent core developmental tasks during this period in the life span (Blakemore, 2008; Dahl & Spear, 2004; Steinberg & Morris, 2000). The paper also emphasizes the importance of investigating and understanding the direct influences of puberty on behavior and disentangling these from the broader set of changes during adolescent development.
Individual differences in traits such as impulsivity involve high reward sensitivity and are associated with risk for substance use disorders. The ventral striatum (VS) has been widely implicated in reward processing, and individual differences in its function are linked to these disorders. Dopamine (DA) plays a critical role in reward processing and is a potent neuromodulator of VS reactivity. Moreover, altered DA signaling has been associated with normal and pathological reward-related behaviors. Functional polymorphisms in DA-related genes represent an important source of variability in DA function that may subsequently impact VS reactivity and associated reward-related behaviors. Using an imaging genetics approach, we examined the modulatory effects of common, putatively functional DA-related polymorphisms on reward-related VS reactivity associated with self-reported impulsivity. Genetic variants associated with relatively increased striatal DA release (DRD2 À141C deletion) and availability (DAT1 9-repeat), as well as diminished inhibitory postsynaptic DA effects (DRD2 À141C deletion and DRD4 7-repeat), predicted 9-12% of the interindividual variability in reward-related VS reactivity. In contrast, genetic variation directly affecting DA signaling only in the prefrontal cortex (COMT Val158Met) was not associated with variability in VS reactivity. Our results highlight an important role for genetic polymorphisms affecting striatal DA neurotransmission in mediating interindividual differences in reward-related VS reactivity. They further suggest that altered VS reactivity may represent a key neurobiological pathway through which these polymorphisms contribute to variability in behavioral impulsivity and related risk for substance use disorders.
Background Conceptual models and recent evidence indicate that neural response to reward is altered in depression. Taking a developmental approach to investigating reward function in adolescent depression can elucidate the etiology, pathophysiology, and course of depression, a disorder that typically begins during adolescence and has high rates of recurrence. Methods This conceptual review describes the what, when, and how of altered reward function in adolescent depression. With the goal of generating new, testable hypotheses within a developmental affective neuroscience framework, we critically review findings and suggest future directions. Peer-reviewed empirical papers for inclusion in this critical review were obtained by searching PubMed, PsycInfo, and ScienceDirect for the years 1990–2010. Results A pattern of low striatal response and high medial prefrontal response to reward is evident in adolescents and adults with depression. Given the salience of social stimuli for positive affect and depression, reward function might be especially disrupted in response to social rewards. Because of changes in the dopamine system and reward function with aging, altered reward function in depression might be more evident during adolescence than later in life; however, low reward function may also be a stable characteristic of people who experience depression. Mechanisms of altered reward function in depression could include disrupted balance of corticostriatal circuit function, with disruption occurring as aberrant adolescent brain development. Conclusions Future studies should examine responses to social rewards; employ longitudinal and prospective designs; and investigate patterns of functional connectivity in reward circuits. Understanding altered reward function in depression has potential implications for treatment development. A more rigorous approach to investigating anhedonia, threat-reward interactions, and comorbid anxiety will be valuable to future progress in describing the role of reward function in the pathophysiology of depression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.