Biotherapeutics currently dominate the landscape of new drugs because of their exceptional potency and selectivity. Yet, the intricate molecular structures that give rise to these beneficial qualities also render them unstable in formulation. Hydrogels have shown potential as stabilizing excipients for biotherapeutic drugs, providing protection against harsh thermal conditions experienced during distribution and storage. In this work, we report the utilization of a cellulose-based supramolecular hydrogel formed from polymer–nanoparticle (PNP) interactions to encapsulate and stabilize insulin, an important biotherapeutic used widely to treat diabetes. Encapsulation of insulin in these hydrogels prevents insulin aggregation and maintains insulin bioactivity through stressed aging conditions of elevated temperature and continuous agitation for over 28 days. Further, insulin can be easily recovered by dilution of these hydrogels for administration at the point of care. This supramolecular hydrogel system shows promise as a stabilizing excipient to reduce the cold chain dependence of insulin and other biotherapeutics.
Shape memory polymers (SMPs) respond to heat by generating programmable movement in devices that require substantial deformation and operate at transient temperatures, including stents and embolization coils. To enable their use in small‐scale applications like retinal vasculature stenting, shape transformations must occur in SMPs with complex 3D geometries with nanoscale features. This work describes the synthesis and sculpting of a benzyl methacrylate‐based SMP into 3D structures with <800 nm characteristic critical dimensions via two photon lithography. Dynamic nanomechanical analysis of 8 µm‐diameter cylindrical pillars reveal the initiation of this SMP's glass transition at 60 °C. Shape memory programming of the characterized pillars as well as complex 3D architectures, including flowers with 500 nm thick petals and cubic lattices with 2.5 µm unit cells and overall dimensions of 4.5 µm × 4.5 µm × 10 µm, demonstrate an 86 +/− 4% characteristic shape recovery ratio. These results reveal a pathway toward SMP devices with nanoscale features and arbitrary 3D geometries changing shape in response to temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.