SUMMARY
Many of the immune and metabolic changes occurring during normal pregnancy also describe metabolic syndrome. Gut microbiota can cause symptoms of metabolic syndrome in non-pregnant hosts: To explore their role in pregnancy, here we characterized fecal bacteria of 91 pregnant women of varying pre-pregnancy BMIs and gestational diabetes status, and their infants. Similarities between infant-mother microbiotas increased with children’s age, and the infant microbiota was unaffected by mother health status. Gut microbiota changed dramatically from first (T1) to third (T3) trimesters, with vast expansion of diversity between mothers, an overall increase in Proteobacteria and Actinobacteria, and reduced richness. T3 stool showed strongest signs of inflammation and energy loss, however microbiome gene repertoires were constant between trimesters. When transferred to germ-free mice, T3 microbiota induced greater adiposity and insulin insensitivity compared to T1. Our findings indicate that host-microbial interactions impacting host metabolism can occur, and may be beneficial, in pregnancy.
Interaction with intestinal microbes in infancy has a profound impact on health and disease in later life through programming of immune and metabolic pathways. We collected maternal faeces, placenta, amniotic fluid, colostrum, meconium and infant faeces samples from 15 mother-infant pairs in an effort to rigorously investigate prenatal and neonatal microbial transfer and gut colonisation. To ensure sterile sampling, only deliveries at full term by elective caesarean section were studied. Microbiota composition and activity assessment by conventional bacterial culture, 16S rRNA gene pyrosequencing, quantitative PCR, and denaturing gradient gel electrophoresis revealed that the placenta and amniotic fluid harbour a distinct microbiota characterised by low richness, low diversity and the predominance of Proteobacteria. Shared features between the microbiota detected in the placenta and amniotic fluid and in infant meconium suggest microbial transfer at the foeto-maternal interface. At the age of 3–4 days, the infant gut microbiota composition begins to resemble that detected in colostrum. Based on these data, we propose that the stepwise microbial gut colonisation process may be initiated already prenatally by a distinct microbiota in the placenta and amniotic fluid. The link between the mother and the offspring is continued after birth by microbes present in breast milk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.