The composition of the postsynaptic ionotropic receptors that receive presynaptically released transmitter is critical not only for transducing and integrating electrical signals but also for coordinating downstream biochemical signaling pathways. At glutamatergic synapses in the adult CNS an overwhelming body of evidence indicates that the NMDA receptor (NMDAR) component of synaptic responses is dominated by NMDARs containing the GluN2A subunit, while NMDARs containing GluN2B, GluN2C, or GluN2D play minor roles in synaptic transmission. Here, we discovered NMDAR-mediated synaptic responses with characteristics not described elsewhere in the adult CNS. We found that GluN2A-containing receptors contribute little to synaptic NMDAR responses while GluN2B dominates at synapses of lamina I neurons in the adult spinal cord. In addition, we provide evidence for a GluN2D-mediated synaptic NMDAR component in adult lamina I neurons. Strikingly, the charge transfer mediated by GluN2D far exceeds that of GluN2A and is comparable to that of GluN2B. Lamina I forms a distinct output pathway from the spinal pain processing network to the pain networks in the brain. The GluN2D-mediated synaptic responses we have discovered in lamina I neurons provide the molecular underpinning for slow, prolonged and feedforward amplification that is a fundamental characteristic of pain.
Background and Purpose: T-type voltage-gated calcium channels are an emerging therapeutic target for neurological disorders including epilepsy and pain. Inhibition of T-type channels reduces the excitability of peripheral nociceptive sensory neurons and reverses pain hypersensitivity in male rodent pain models. However, administration of peripherally restricted T-type antagonists failed to show efficacy in multiple clinical and preclinical pain trials, suggesting that inhibition of peripheral T-type channels alone may be insufficient for pain relief. Experimental Approach: We utilized the selective and CNS-penetrant T-type channel antagonist, Z944, in electrophysiological, calcium imaging and behavioural paradigms to determine its effect on lamina I neuron excitability and inflammatory pain behaviours. Key Results: Voltage-clamp recordings from lamina I spinal neurons of adult rats revealed that approximately 80% of neurons possess a low threshold T-type current, which was blocked by Z944. Due to this highly prevalent T-type current, Z944potently blocked action-potential evoked somatic and dendritic calcium transients in lamina I neurons. Moreover, application of Z944 to spinal cord slices attenuated action potential firing rates in over half of laminae I/II neurons. Finally, we found that intraperitoneal injection of Z944 (1-10 mgÁkg À1 ) dose-dependently reversed mechanical allodynia in the complete Freund's adjuvant model of persistent inflammatory pain, with a similar magnitude and time course of analgesic effects between male and female rats. Conclusion and Implications:T-type calcium channels critically shape the excitability of lamina I pain processing neurons and inhibition of these channels by the clinical stage antagonist Z944 potently reverses pain hypersensitivity across sexes.
Maladaptive plasticity of neurons in lamina I of the spinal cord is a lynchpin for the development of chronic pain, and is critically dependent on intracellular calcium signaling. However, the relationship between neuronal activity and intracellular calcium in these neurons is unknown. Here we combined two-photon calcium imaging with whole-cell electrophysiology to determine how action potential firing drives calcium responses within subcellular compartments of male rat spinal cord lamina I neurons. We found that single action potentials generated at the soma increase calcium concentration in the somatic cytosol and nucleus, and these calcium responses invade dendrites and dendritic spines by active backpropagation. Calcium responses in each compartment were dependent on voltage-gated calcium channels, and somatic and nuclear calcium responses were amplified by release of calcium from ryanodine-sensitive intracellular stores. Grouping single action potentialevoked calcium responses by neuron type demonstrated their presence in all defined types, as well as a high degree of similarity in calcium responses between neuron types. With bursts of action potentials, we found that calcium responses have the capacity to encode action potential frequency and number in all compartments, with action potential number being preferentially encoded. Together, these findings indicate that intracellular calcium serves as a readout of neuronal activity within lamina I neurons, providing a unifying mechanism through which activity may regulate plasticity, including that seen in chronic pain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.