The neural crest (NC) is a major contributor to the vertebrate craniofacial skeleton, detailed in model organisms through embryological and genetic approaches, most notably in chick and mouse. Despite many similarities between these rather distant species, there are also distinct differences in the contribution of the NC, particularly to the calvariae of the skull. Lack of information about other vertebrate groups precludes an understanding of the evolutionary significance of these differences. Study of zebrafish craniofacial development has contributed substantially to understanding of cartilage and bone formation in teleosts, but there is currently little information on NC contribution to the zebrafish skeleton. Here, we employ a two–transgene system based on Cre recombinase to genetically label NC in the zebrafish. We demonstrate NC contribution to cells in the cranial ganglia and peripheral nervous system known to be NC–derived, as well as to a subset of myocardial cells. The indelible labeling also enables us to determine NC contribution to late–forming bones, including the calvariae. We confirm suspected NC origin of cartilage and bones of the viscerocranium, including cartilages such as the hyosymplectic and its replacement bones (hymandibula and symplectic) and membranous bones such as the opercle. The cleithrum develops at the border of NC and mesoderm, and as an ancestral component of the pectoral girdle was predicted to be a hybrid bone composed of both NC and mesoderm tissues. However, we find no evidence of a NC contribution to the cleithrum. Similarly, in the vault of the skull, the parietal bones and the caudal portion of the frontal bones show no evidence of NC contribution. We also determine a NC origin for caudal fin lepidotrichia; the presumption is that these are derived from trunk NC, demonstrating that these cells have the ability to form bone during normal vertebrate development.
Osteoporosis is metabolic bone disease caused by an altered balance between bone anabolism and catabolism. This dysregulated balance is responsible for fragile bones that fracture easily after minor falls. With an aging population, the incidence is rising and as yet pharmaceutical options to restore this imbalance is limited, especially stimulating osteoblast bone-building activity. Excitingly, output from large genetic studies on people with high bone mass (HBM) cases and genome wide association studies (GWAS) on the population, yielded new insights into pathways containing osteo-anabolic players that have potential for drug target development. However, a bottleneck in development of new treatments targeting these putative osteo-anabolic genes is the lack of animal models for rapid and affordable testing to generate functional data and that simultaneously can be used as a compound testing platform. Zebrafish, a small teleost fish, are increasingly used in functional genomics and drug screening assays which resulted in new treatments in the clinic for other diseases. In this review we outline the zebrafish as a powerful model for osteoporosis research to validate potential therapeutic candidates, describe the tools and assays that can be used to study bone homeostasis, and affordable (semi-)high-throughput compound testing.
Low muscle strength is an important heritable indicator of poor health linked to morbidity and mortality in older people. In a genome-wide association study meta-analysis of 256,523 Europeans aged 60 years and over from 22 cohorts we identify 15 loci associated with muscle weakness (European Working Group on Sarcopenia in Older People definition: n = 48,596 cases, 18.9% of total), including 12 loci not implicated in previous analyses of continuous measures of grip strength. Loci include genes reportedly involved in autoimmune disease (HLA-DQA1p = 4 × 10−17), arthritis (GDF5p = 4 × 10−13), cell cycle control and cancer protection, regulation of transcription, and others involved in the development and maintenance of the musculoskeletal system. Using Mendelian randomization we report possible overlapping causal pathways, including diabetes susceptibility, haematological parameters, and the immune system. We conclude that muscle weakness in older adults has distinct mechanisms from continuous strength, including several pathways considered to be hallmarks of ageing.
During growth, individual skull bones overlap at sutures, where osteoblast differentiation and bone deposition occur. Mutations causing skull malformations have revealed some required genes, but many aspects of suture regulation remain poorly understood. We describe a zebrafish mutation in osterix/sp7, which causes a generalized delay in osteoblast maturation. While most of the skeleton is patterned normally, mutants have specific defects in the anterior skull and upper jaw, and the top of the skull comprises a random mosaic of bones derived from individual initiation sites. Osteoblasts at the edges of the bones are highly proliferative and fail to differentiate, consistent with global changes in gene expression. We propose that signals from the bone itself are required for orderly recruitment of precursor cells and growth along the edges. The delay in bone maturation caused by loss of Sp7 leads to unregulated bone formation, revealing a new mechanism for patterning the skull and sutures.
The Golgi is the cellular hub for complex glycosylation, controlling accurate processing of complex proteoglycans, receptors, ligands and glycolipids. Its structure and organisation are dependent on golgins, which tether cisternal membranes and incoming transport vesicles. Here, we show that knockout of the largest golgin, giantin, leads to substantial changes in gene expression but only limited effects on Golgi structure. Notably, 22 Golgi-resident glycosyltransferases, but not glycan-processing enzymes or the ER glycosylation machinery, are differentially expressed following giantin ablation. This includes near-complete loss of function of GALNT3 in both mammalian cell and zebrafish models. Giantin-knockout zebrafish exhibit hyperostosis and ectopic calcium deposits, recapitulating phenotypes of hyperphosphatemic familial tumoral calcinosis, a disease caused by mutations in GALNT3. These data reveal a new feature of Golgi homeostasis: the ability to regulate glycosyltransferase expression to generate a functional proteoglycome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.