Despite the dominance of terrestriality in spiders, species across a diverse array of families are associated with aquatic habitats. Many species in the spider family Dictynidae are associated with water, either living near it or, in the case of Argyroneta aquatica, in it. Previous studies have indicated that this association arose once within the family. Here we test the hypothesis of a single origin via the broadest phylogeny of dictynids and related ‘marronoids’ to date, using several taxa that were not previously sampled in molecular analyses to provide the first quantitative test of the hypothesis put forth by Wheeler et al. (2016). We sampled 281 terminal taxa from 14 families, assembling a matrix with 4380 total base pairs of data from most taxa. We also assembled an atlas of morphological traits with potential significance for both ecology and taxonomy. Our resulting trees indicate that an aquatic habitat association has arisen multiple times within dictynids. Dictynidae and the genus Dictyna are polyphyletic and the genera Lathys and Cicurina remain unplaced. A review of aquatic habitat associations in spiders indicates that it occurs in members of at least 21 families. With our morphological atlas, we explore characters that have been implicated in aiding an aquatic lifestyle, which in the past may have caused confusion regarding taxon placement. Our results indicate that not all spiders with traits thought to be useful for aquatic habitat associations occupy such habitats, and that some spider taxa lacking these traits are nonetheless associated with water.
The arachnid order Schizomida is a relatively understudied group of soil-dwelling predators found on all continents except Antarctica. While efforts to understand their biology are growing, there is still much to know about them. A curious aspect of their morphology is the male flagellum, a sexually dimorphic, tail-like structure which differs in shape across the order and functions in their courtship rituals. The flagellar shape is important for taxonomic classification, yet few efforts have been made to examine shape diversity across the group. Using elliptical Fourier analysis, a type of geometric morphometrics based on shape outline, we quantified shape differences across a combined nearly 550 outlines in the dorsal and lateral views, categorizing them based on genus, family, biogeographic realm, and habitat, with special emphasis on Caribbean and Cuban fauna. We tested for allometric relationships, differences in disparity based on locations and sizes in morphospace among these categories, and for clusters of shapes in morphospace. We found multiple differences in all categories despite apparent overlaps in morphospace, evolutionary allometry, and evidence for discrete clusters in some flagellum shapes. This study can serve as a foundation for further study on the evolution, diversification, and taxonomic utility of the male flagellum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.