Group transfer polymerization was used for the one-pot preparation of a network structure comprising cross-linked star homopolymers. The structure contains many dangling chains (constituting the arms of the primary stars), whose number is approximately equal to the number of the elastic chains. 2-(Dimethylamino)ethyl methacrylate and ethylene glycol dimethacrylate were used as the monomer and cross-linker, respectively. The synthesis involved a four-step sequential addition of monomer/cross-linker/monomer/cross-linker, which produced linear polymer, "arm-first" star polymer, "in-out" star polymer, and cross-linked star polymer network, respectively. The products of the first three steps of the synthesis were characterized in terms of their relative molecular weights by gel permeation chromatography, and in terms of their absolute molecular weights by static light scattering, which indicated that the number of arms in the "arm-first" stars is about 50, whereas that in the "in-out" stars is about 100. Seven networks were prepared in total, covering a range of degrees of polymerization of the primary and the secondary arms. The degrees of swelling of all the networks were measured in water and were found to increase by lowering the pH, a result of the ionization of the tertiary amine group of the monomer repeat unit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.