Background There is a dearth of studies on the effects of the neighbourhood environment on adults’ cognitive function. We examined how interrelated aspects of the built and natural neighbourhood environment, including air pollution, correlate with adults’ cognitive function, and the roles of physical activity and sedentary behaviours in these associations. Methods We used data from 4,141 adult urban dwellers who participated in the Australian Diabetes, Obesity and Lifestyle 3 study on socio-demographic characteristics, neighbourhood self-selection, physical activity and sedentary behaviours, and cognitive function. Neighbourhood environmental characteristics included population density, intersection density, non-commercial land use mix, and percentages of commercial land, parkland and blue space, all within 1 km residential buffers. We also calculated annual mean concentrations of NO2 and PM2.5. Generalised additive mixed models informed by directed acyclic graphs were used to estimate the total, direct and indirect effects of environmental attributes on cognitive functions and the joint-significance test was used to examine indirect effects via behaviours. Results In the total effects models, population density and percentage of parkland were positively associated with cognitive function. A positive association of PM2.5 with memory was also observed. All neighbourhood environmental attributes were directly and/or indirectly related to cognitive functions via other environmental attributes and/or physical activity but not sedentary behaviours. Engagement in transportation walking and gardening frequency partially mediated the positive effects of the neighbourhood environment on cognitive function, while frequency of transportation walking mediated the negative effects. Conclusions In the context of a low-density country like Australia, denser urban environments with access to parkland may benefit residents’ cognitive health by providing opportunities for participation in a diversity of activities. A more fine-grained characterisation of the neighbourhood environment may be necessary to tease out the negative and positive impacts of inter-related characteristics of urban neighbourhood environments on cognitive function.
Population ageing and urbanisation are global phenomena that call for an understanding of the impacts of features of the urban environment on older adults’ cognitive function. Because neighbourhood characteristics that can potentially have opposite effects on cognitive function are interdependent, they need to be considered in conjunction. Using data from an Australian national sample of 4141 adult urban dwellers, we examined the extent to which the associations of interrelated built and natural environment features and ambient air pollution with cognitive function are explained by cardiometabolic risk factors relevant to cognitive health. All examined environmental features were directly and/or indirectly related to cognitive function via other environmental features and/or cardiometabolic risk factors. Findings suggest that dense, interconnected urban environments with access to parks, blue spaces and low levels of air pollution may benefit cognitive health through cardiometabolic risk factors and other mechanisms not captured in this study. This study also highlights the need for a particularly fine-grained characterisation of the built environment in research on cognitive function, which would enable the differentiation of the positive effects of destination-rich neighbourhoods on cognition via participation in cognition-enhancing activities from the negative effects of air pollutants typically present in dense, destination-rich urban areas.
The environment we live in, and our lifestyle within this environment, can shape our cognitive health. We investigated whether sociodemographic, neighbourhood environment, and lifestyle variables can be used to predict cognitive health status in adults. Cross-sectional data from the AusDiab3 study, an Australian cohort study of adults (34–97 years) (n = 4141) was used. Cognitive function was measured using processing speed and memory tests, which were categorized into distinct classes using latent profile analysis. Sociodemographic variables, measures of the built and natural environment estimated using geographic information system data, and physical activity and sedentary behaviours were used as predictors. Machine learning was performed using gradient boosting machine, support vector machine, artificial neural network, and linear models. Sociodemographic variables predicted processing speed (r2 = 0.43) and memory (r2 = 0.20) with good accuracy. Lifestyle factors also accurately predicted processing speed (r2 = 0.29) but weakly predicted memory (r2 = 0.10). Neighbourhood and built environment factors were weak predictors of cognitive function. Sociodemographic (AUC = 0.84) and lifestyle (AUC = 0.78) factors also accurately classified cognitive classes. Sociodemographic and lifestyle variables can predict cognitive function in adults. Machine learning tools are useful for population-level assessment of cognitive health status via readily available and easy-to-collect data.
Older people living in squalor present healthcare providers with a set of complex issues because squalor occurs alongside a variety of medical and psychiatric conditions, and older people living in squalor frequently decline intervention. To synthesise empirical evidence on squalor to inform ethical decision-making in the management of squalor using the bioethical framework of principlism. A systematic literature search was conducted using Medline, Embase, PsycINFO and CINAHL databases for empirical research on squalor in older people. Given the limited evidence base to date, an interpretive approach to synthesis was used. Sixty-seven articles that met the inclusion criteria were included in the review. Our synthesis of the research evidence indicates that: (i) older people living in squalor have a high prevalence of frontal executive dysfunction, medical comorbidities and premature deaths; (ii) interventions are complex and require interagency involvement, with further evaluations needed to determine the effectiveness and potential harm of interventions; and (iii) older people living in squalor utilise more medical and social resources, and may negatively impact others around them. These results suggest that autonomous decision-making capacity should be determined rather than assumed. The harm associated with squalid living for the older person, and for others around them, means a non-interventional approach is likely to contravene the principles of non-maleficence, beneficence and justice. Adequate assessment of decision-making capacity is of particular importance. To be ethical, any intervention undertaken must balance benefits, harms, resource utilisation and impact on others.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.