Membrane-bound pyrophosphatase (mPPases) of various types consume pyrophosphate (PPi) to drive active H+ or Na+ transport across membranes. H+-transporting PPases are divided into phylogenetically distinct K+-independent and K+-dependent subfamilies. In the present study, we describe a group of 46 bacterial proteins and one archaeal protein that are only distantly related to known mPPases (23%-34% sequence identity). Despite this evolutionary divergence, these proteins contain the full set of 12 polar residues that interact with PPi, the nucleophilic water and five cofactor Mg2+ ions found in 'canonical' mPPases. They also contain a specific lysine residue that confers K+ independence on canonical mPPases. Two of the proteins (from Chlorobium limicola and Cellulomonas fimi) were expressed in Escherichia coli and shown to catalyse Mg2+-dependent PPi hydrolysis coupled with electrogenic H+, but not Na+ transport, in inverted membrane vesicles. Unique features of the new H+-PPases include their inhibition by Na+ and inhibition or activation, depending on PPi concentration, by K+ ions. Kinetic analyses of PPi hydrolysis over wide ranges of cofactor (Mg2+) and substrate (Mg2-PPi) concentrations indicated that the alkali cations displace Mg2+ from the enzyme, thereby arresting substrate conversion. These data define the new proteins as a novel subfamily of H+-transporting mPPases that partly retained the Na+ and K+ regulation patterns of their precursor Na+-transporting mPPases.
Membrane-bound pyrophosphatases (mPPases) hydrolyze pyrophosphate (PPi) to transport H(+), Na(+) or both and help organisms to cope with stress conditions, such as high salinity or limiting nutrients. Recent elucidation of mPPase structure and identification of subfamilies that have fully or partially switched from Na(+) to H(+) pumping have established mPPases as versatile models for studying the principles governing the mechanism, specificity and evolution of cation transporters. In the present study, we constructed an accurate phylogenetic map of the interface of Na(+)-transporting PPases (Na(+)-PPases) and Na(+)- and H(+)-transporting PPases (Na(+),H(+)-PPases), which guided our experimental exploration of the variations in PPi hydrolysis and ion transport activities during evolution. Surprisingly, we identified two mPPase lineages that independently acquired physiologically significant Na(+) and H(+) cotransport function. Na(+),H(+)-PPases of the first lineage transport H(+) over an extended [Na(+)] range, but progressively lose H(+) transport efficiency at high [Na(+)]. In contrast, H(+)-transport by Na(+),H(+)-PPases of the second lineage is not inhibited by up to 100 mM Na(+) With the identification of Na(+),H(+)-PPase subtypes, the mPPases protein superfamily appears as a continuum, ranging from monospecific Na(+) transporters to transporters with tunable levels of Na(+) and H(+) cotransport and further to monospecific H(+) transporters. Our results lend credence to the concept that Na(+) and H(+) are transported by similar mechanisms, allowing the relative efficiencies of Na(+) and H(+) transport to be modulated by minor changes in protein structure during the course of adaptation to a changing environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.