The crystal structure of (1−x)BaTiO3-xBiAlO3 (x = 0, 0.02, 0.05, 0.08, and 0.1) ceramics was determined using X-ray diffraction and Raman spectroscopy at room temperature, which revealed a phase transition from tetragonal to rhombohedral with increasing x. The dielectric properties were studied as a function of temperature at different frequencies, which indicated that the phase transition temperature (Tm) decreased with increasing x. The relaxor behavior was observed by frequency and temperature dependent dielectric permittivity. The Lorenz-type quadratic law was used to characterize the dielectric permittivity peaks near Tm of high-temperature slopes at 1 MHz. The temperatures Tm of dielectric permittivity peaks fit very well with the Vogel-Fulcher law in x = 0.05 and x = 0.1. The polarization hysteresis loops and electrostrictive were displayed at room temperature. The sample for x = 0.1 exhibits a slim loop with negligible hysteresis and a subtle linear feature, which is a promising transducer material for use as an active element.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.