In addition to their fundamental role in clearance, the kidneys release select molecules into the circulation, but whether any of these anabolic functions provides insight on kidney health is unknown. Using aptamer-based proteomics, we characterized arterial (A)-to-renal venous (V) gradients for >1,300 proteins in 22 individuals who underwent invasive sampling. Although most of the proteins that changed significantly decreased from A to V, consistent with renal clearance, several were found to increase, the most significant of which was testican-2. To assess the clinical implications of these physiologic findings, we examined proteomic data in the Jackson Heart Study (JHS), an African-American cohort (n = 1,928), with replication in the Framingham Heart Study (FHS), a White cohort (n = 1,621). In both populations, testican-2 had a strong, positive correlation with estimated glomerular filtration rate (eGFR). In addition, higher baseline testican-2 levels were associated with a lower rate of eGFR decline in models adjusted for age, gender, hypertension, type 2 diabetes, body mass index, baseline eGFR, and albuminuria. Glomerular expression of testican-2 in human kidneys was demonstrated by immunohistochemistry, immunofluorescence, and electron microscopy, while single-cell RNA sequencing of human kidneys showed expression of the cognate gene, SPOCK2, exclusively in podocytes. In vitro, testican-2 increased glomerular endothelial tube formation and motility, raising the possibility that its secretion has a functional role within the glomerulus. Taken together, our findings identify testican-2 as a podocyte-derived biomarker of kidney health and prognosis.
Background: Delayed renal graft function (DGF) contributes to the determination of length of hospitalization, risk of acute rejection, and graft loss. Existing tools aid the diagnosis of specific DGF etiologies such as antibody-mediated rejection, but markers of recovery have been elusive. The peroxisome proliferator gamma co-activator-1-alpha (PGC1α) is highly expressed in the renal tubule, regulates mitochondrial biogenesis, and promotes recovery from experimental acute kidney injury. Objectives: We aimed to determine the association between renal allograft PGC1α expression and recovery from delayed graft function. Methods: We retrospectively analyzed patients undergoing renal transplantation at a single center from January 1, 2008 to June 30, 2014. PGC1α expression was assessed by immunostaining and ultrastructural characteristics by transmission electron microscopy. Of 34 patients who underwent renal biopsy for DGF within 30 days of transplant, 21 were included for analysis. Results: Low PGC1α expression was associated with a significantly longer time on dialysis after transplant (median of 35.5 vs. 16 days, p < 0.05) and a significantly higher serum creatinine (sCr) at 4 weeks after transplantation among those who discontinued dialysis (5 vs. 1.65 mg/dL, p < 0.0001). Low PGC1α expression was not associated with higher sCr at 12 weeks after transplantation. Ultrastructural characteristics including apical membrane blebbing and necrotic luminal debris were not informative regarding clinical outcomes. Conclusions: These data suggest that higher PGC1α expression is associated with faster and more complete recovery from DGF. Mitochondrial biogenesis may be a therapeutic target for DGF. Larger studies are needed to validate these findings.
Alport syndrome is a hereditary disease affecting Type IV collagen characterized by hematuria, progressive renal failure, sensorineural hearing loss, and ocular abnormalities. Most cases are X-linked and involve the <i>COL4A5</i> gene with a minority of patients having autosomal recessive mutations in the <i>COL4A3</i> or <i>COL4A4</i> genes encoding the α3(IV) or α4(IV) chain respectively. Here, we describe the case of a 31-year-old woman who presented during pregnancy with hematuria and proteinuria and was diagnosed with autosomal recessive Alport syndrome (ARAS) post-partum. Her biopsy was notable for findings of segmental glomerulosclerosis with some collapsing features, in addition to thin basement membranes and rare “splitting”. Genetic testing identified 2 novel mutations in the <i>COL4A4</i> gene: a truncating frame shift mutation c.3861delinsCTC and a missense mutation c.4708G>A (p.Glu1570Lys), both of which we assert to be pathogenic. She had normal full-term delivery without complications. This case has several unique features including the relatively mild disease phenotype and the findings of glomerular scarring with collapsing features on renal biopsy. The successful pregnancy outcome and her clinical presentation add to the growing body of evidence that ARAS can have a variable phenotype.
The teleology of sex differences has been argued since at least as early as Aristotle's Generation of Animals over 300 years BC. While the question "why are the sexes different" remains a topic of debate in the present day in Metaphysics, the recent emphasis on sex comparison in research studies has led to the question "how are the sexes different" being addressed in health science through numerous observational studies in both health and disease susceptibility, including blood pressure regulation and hypertension. These efforts have resulted in better understanding of differences in males and females at the molecular level that partially explain their differences in vascular function and renal sodium handling, and hence blood pressure and the consequential cardiovascular and kidney disease risks in hypertension. This review will focus on clinical studies comparing differences between men and women in blood pressure over the lifespan and response to dietary sodium, and will highlight experimental models investigating sexual dimorphism in the renin angiotensin-aldosterone, vascular, sympathetic nervous and immune systems, endothelin, the major renal sodium transporters/exchangers, and the impact of sex hormones on these systems in blood pressure homeostasis. Understanding the mechanisms governing sex differences in blood pressure regulation could guide novel therapeutic approaches in a sex-specific manner to lower cardiovascular risks in hypertension and advance personalized medicine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.