Nonstructural protein 4 (NSP4), encoded by group A rotavirus genome segment 10, is a multifunctional protein and the first recognized virus-encoded enterotoxin. The NSP4 gene has been sequenced, and five distinct genetic groups have been described: genotypes A-E. NSP4 genotypes A, B, and C have been detected in humans. In this study, the NSP4-encoding gene of human rotavirus strains of different G and P genotypes collected from children between 1987 and 2003 in three cities of West Central region of Brazil was characterized. NSP4 gene of 153 rotavirus-positive fecal samples was amplified by reverse transcriptase-polymerase chain reaction and then sequenced. For phylogenetic analysis, NSP4 nucleotide sequences of these samples were compared to nucleotide sequences of reference strains available in GenBank. Two distinct NSP4 genotypes could be identified: 141 (92.2%) sequences clustered with NSP4 genotype B, and 12 sequences (7.8%) clustered with NSP4 genotype A. These results reinforce that further investigations are needed to assess the validity of NSP4 as a suitable target for epidemiologic surveillance of rotavirus infections and vaccine development.
Three magnetic fluid (MF) samples containing gamma-Fe2O3 (maghemite) nanoparticles surface-coated with either meso-2,3-dimercaptosuccinic acid (DMSA), citric acid or lauric acid were prepared, characterized, and assessed for their cytotoxic potential on the human SK-MEL-37 melanoma cell line. Ultra-structural analysis was also performed using transmission electron microscopy (TEM). In vitro cytotoxicity was evaluated by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The inhibitory concentration (IC50) derived from the sigmoidal dose response curve was 254 microg-iron/mL (95% confidence interval 239-270 microg-iron/mL) for lauric acid-coated nanoparticles. DMSA-coated nanoparticles did not exhibit a clear trend toward toxicity (IC50 value is more than 2260 +/- 50 microg-iron/mL) and the IC50 value was about 433 +/- 14 microg-iron/mL for citric-acid coated nanoparticles. The cytotoxic response correlated with both the hydrodynamic diameter and the zeta potential suggests that the chain length of the carboxylic acid of the coating species may influence metabolic cellular process. Also the assayed nanoparticles can be considered non-cytotoxic to human melanoma cells since IC50 values are higher than plasma concentration usually observed in clinical use of contrast agents. Using TEM we verified that all assayed nanoparticles were internalized by cells through endocytic vesicles. Additionally, cells treated with lauric acid-coated nanoparticles at high concentration (588 or 840 microg-iron/mL) displayed morphological features of apoptosis (surface blebbing, intense vacuolization and chromatin condensation) or a typical DNA ladder pattern when analyzed by TEM or agarose gel electrophoresis, respectively. Apoptotic events may be operative, suggesting a promising therapeutic application for the lauric acid-coated nanoparticle in the treatment of cancer cells.
The adenoviruses are frequently associated with sporadic gastroenteritis outbreaks in different parts of the world. This study aimed at the molecular characterization of human adenoviruses (HAdV) species and serotypes, in fecal samples from children, by multiplex-PCR and by PCR-RFLP, respectively, followed by genomic sequencing. Of 39 adenovirus-positive samples, 30 (76.9%) were classified as species F, six (15.4%) as species C, and two (5.1%) as species A, and one (2.6%) had a mixed F/C pattern. The serotyping showed that 14 (41.2%) were HAdV-41, 15 (44.1%) were HAdV-40, five (14.7%) were HAdV-5, and five samples could not be serotyped. This is the first study to molecularly characterize HAdV in the Central West region of Brazil, and the results highlight the circulation of the HAdV-5 among children with acute gastroenteritis in this region.
The in vitro growth of embryonic stem cells (ESCs) is usually obtained in the presence of murine embryonic fibroblasts (MEF), but new methods for in vitro expansion of ESCs should be developed due to their potential clinical use. This study aims to establish a culture system to expand and maintain ESCs in the absence of MEF by using murine embryonic stem cells (mECS) as a model of embryonic stem cell. Magnetic nanoparticles (MNPs) were used for growing mESCs in the presence of an external magnetic field, creating the magnetic field-magnetic nanoparticle (MF-MNP) culture system. The growth characteristics were evaluated showing a doubling time slightly higher for mESCs cultivated in the presence of the system than in the presence of the MEF. The undifferentiated state was characterized by RT-PCR, immunofluorescence, alkaline phosphatase activity and electron microscopy. Murine embryonic stem cells cultivated in presence of the MF-MNP culture system exhibited Oct-4 and Nanog expression and high alkaline phosphatase activity. Ultrastructural morphology showed that the MF-MNP culture system did not interfere with processes that cause structural changes in the cytoplasm or nucleus. The MF-MNP culture system provides a tool for in vitro expansion of mESCs and could contribute to studies that aim the therapeutic use of embryonic stem cells.
Group A rotaviruses (RVA) are the main causing agents of acute gastroenteritis worldwide, having a great impact on childhood mortality in developing countries. The objective of this study was to identify RVA-positive fecal samples with mixed P genotypes by hemi-nested reverse transcriptase-polymerase chain reaction (RT-PCR), followed by sequencing confirmation. Our results showed that, from the 81 RVA-positive samples, 25 were positive for more than one P genotype by hemi-nested RT-PCR. Of these 25 samples, 12 (48%) had their mixed P genotypes confirmed by sequencing and, from these, 10 were identified as P[6]P[8], one as P[4]P[6], and one as P[4]P[6]P[8]. Our results confirm the occurrence of RVA mixed infections among children in Brazil and reinforce the importance of the constant monitoring of RVA circulating strains for the efficacy of control/prevention against these agents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.