Countries are encouraged to identify drivers of deforestation and forest degradation in the development of national strategies and action plans for REDD+. In this letter we provide an assessment of proximate drivers of deforestation and forest degradation by synthesizing empirical data reported by countries as part of their REDD+ readiness activities, CIFOR country profiles, UNFCCC national communications and scientific literature. Based on deforestation rate and remaining forest cover 100 (sub)tropical non-Annex I countries were grouped into four forest transition phases. Driver data of 46 countries were summarized for each phase and by continent, and were used as a proxy to estimate drivers for the countries with missing data. The deforestation drivers are similar in Africa and Asia, while degradation drivers are more similar in Latin America and Asia. Commercial agriculture is the most important driver of deforestation, followed by subsistence agriculture. Timber extraction and logging drives most of the degradation, followed by fuelwood collection and charcoal production, uncontrolled fire and livestock grazing. The results reflect the most up to date and comprehensive overview of current national-level data availability on drivers, which is expected to improve over time within the frame of the UNFCCC REDD+ process.
The achievement of international goals and national commitments related to forest conservation and management, climate change, and sustainable development requires credible, accurate, and reliable monitoring of stocks and changes in forest biomass and carbon. Most prominently, the Paris Agreement on Climate Change and the United Nations' Sustainable Development Goals in particular require data on biomass to monitor progress. Unprecedented opportunities to provide forest biomass data are created by a series of upcoming space-based missions, many of which provide open data targeted at large areas and better spatial resolution biomass monitoring than has previously been achieved. We assess various policy needs for biomass data and recommend a long-term collaborative effort among forest biomass data producers and users to meet these needs. A gap remains, however, between what can be achieved in the research domain and what is required to support policy making and meet reporting requirements. There is no single biomass dataset that serves all users in terms of definition and type of biomass measurement, geographic area, and uncertainty requirements, and whether there is need for the most recent up-to-date biomass estimate or a long-term biomass trend. The research and user communities should embrace the potential strength of the multitude of upcoming missions in combination to provide for these varying needs and to ensure continuity for long-term data provision which one-off research missions cannot provide. International coordination bodies such as Global Forest Observations Initiative (GFOI), Committee on Earth Observation Satellites (CEOS), and Global Observation of Forest Cover and Land Dynamics (GOFC-GOLD) will be integral in addressing these issues in a way that fulfils these needs in a timely fashion. Further coordination work should particularly look into how space-based data can be better linked with field reference data sources such as forest plot networks, and there is also a need to ensure that reference data cover a range of forest types, management regimes, and disturbance regimes worldwide.
River floodplains in the Netherlands serve as water storage areas, while they also have the function of nature rehabilitation areas. Floodplain vegetation is therefore subject to natural processes of vegetation succession. At the same time, vegetation encroachment obstructs the water flow into the floodplains and increases the flood risk for the hinterland. Spaceborne pointable imaging spectroscopy has the potential to quantify vegetation density on the basis of leaf area index (LAI) from a desired view zenith angle. In this respect, hyperspectral pointable CHRIS data were linked to the ray tracing canopy reflectance model FLIGHT to retrieve vegetation density estimates over a heterogeneous river floodplain. FLIGHT enables simulating top-of-canopy reflectance of vegetated surfaces either in turbid (e.g., grasslands) or in 3D (e.g., forests) mode. By inverting FLIGHT against CHRIS data, LAI was computed for three main classified vegetation types, 'herbaceous', 'shrubs' and 'forest', and for the CHRIS view zenith angles in nadir, backward (−36°) and forward (+36°) scatter direction. The −36° direction showed most LAI variability within the vegetation types and was best validated, closely followed by the nadir direction. The +36° direction led to poorest LAI retrievals. The class-based inversion process has been implemented into a GUI toolbox which would enable the river manager to generate LAI maps in a semiautomatic way.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.