The chemical composition of the volatile fraction of myrtle (Myrtus communis L.) alcoholic extracts and essential oils from leaves and berries collected in different places in Sardinia (Italy) was studied. A simple and rapid liquid-liquid extraction method was used to isolate volatile compounds from myrtle alcoholic extracts followed by GC and GC-MS analysis allowing the detection of 24 compounds. The volatile fraction was characterized by the terpenes fraction corresponding to that of the essential oils and by a fatty acid ethyl esters fraction. The variation during extraction of the volatile fraction in alcoholic extracts of berries and leaves was evaluated. Essential oils were obtained by hydrodistillation, and the yields were on average 0.52 +/- 0.03% (v/w dried weight) and 0.02 +/- 0.00% for leaves and berries, respectively. The essential oils were analyzed by GC and GC-MS, and a total of 27 components were detected, accounting for 90.6-98.7% of the total essential oil composition. Strong chemical variability depending on the origin of the samples was observed. The major compounds in the essential oils were alpha-pinene (30.0 and 28.5%), 1,8-cineole (28.8 and 15.3%), and limonene (17.5 and 24.1%) in leaves and berries, respectively, and were characterized by the lack of myrtenyl acetate.
Neem-based insecticides containing azadirachtin and related azadirachtoids are widely used in agriculture. Here, we report an analytical method for the rapid and accurate quantification of the insecticide azadirachtin A and B and other azadirachtoids such as salannin, nimbin, and their deacetylated analogues on tomatoes and peaches. Azadirachtoids were extracted from fruits and vegetables with acetonitrile. Using high-performance liquid chromatography/electrospray ionization tandem mass spectrometer, azadirachtoids were selectively detected monitoring the multiple reaction transitions of sodium adduct precursor ions. For azadirachtin A, calibration was linear over a working range of 1-1000 microg/L with r > 0.996. The limit of detection and limit of quantification for azadirachtin A were 0.4 and 0.8 microg/kg, respectively. The presence of interfering compounds in the peach and tomato extracts was evaluated and found to be minimal. Because of the linear behavior, it was concluded that the multiple reaction transitions of sodium adduct ions can be used for analytical purposes, that is, for the identification and quantification of azadirachtin A and B and related azadirachtoids in fruit and vegetable extracts at trace levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.