Because of species selectivity, HIV research is largely restricted to in vitro or clinical studies, both limited in their ability to rapidly assess new strategies to fight the virus. To prospectively study some aspects of HIV in vivo, immunodeficient mice, transplanted with either human peripheral blood leukocytes or human fetal tissues, have been developed. Although these are susceptible to HIV infection, xenoreactivity, and short infection spans, resource and ethical constraints, as well as biased HIV coreceptor tropic strain infection, pose substantial problems in their use. Rag2 ؊/؊ ␥c ؊/؊ mice, transplanted as newborns with human CD34 ؉ cells, were recently shown to develop human B, T, and dendritic cells, constituting lymphoid organs in situ. Here we tested these mice as a model system for HIV-1 infection. HIV RNA levels peaked to up to 2 ؋ 10 6 copies per milliliter of plasma early after infection, and viremia was observed for up to 190 days, the longest time followed. A marked relative CD4 ؉ T cell depletion in peripheral blood occurred in CXCR4-tropic strain-infected mice, whereas this was less pronounced in CCR5-tropic strain-infected animals. Thymus infection was almost exclusively observed in CXCR4-tropic strain-infected mice, whereas spleen and lymph node HIV infection occurred irrespective of coreceptor selectivity, consistent with respective coreceptor expression on human CD4 ؉ T cells. Thus, this straightforward to generate and cost-effective in vivo model closely resembles HIV infection in man and therefore should be valuable to study virus-induced pathology and to rapidly evaluate new approaches aiming to prevent or treat HIV infection.
Chronic immune activation is a major cause for progressive immunodeficiency in human immunodeficiency virus type-1 (HIV) infection. The underlying trigger, however, remains largely unknown. HIV single-stranded RNA is a potent immune activator by triggering Toll-like receptor (TLR) 7/8. Thus, we hypothesized that sustained TLR7 triggering induces chronic immune activation and thereby contributes to progressive immunodeficiency. We used the synthetic compound R848 or a mixture of uridine-rich HIV single-stranded (ss) RNA oligonucleotides-both are potent TLR7/8 agonists-to explore the effects of sustained TLR7 triggering on the murine lymphoid system. Sustained TLR7 triggering induced an immunopathology reminiscent of progressive lymphoid destruction in HIV disease; we observed lymphopenia, elevated proinflammatory cytokines, splenomegaly, contracted lymphoid subsets, and lymphoid microarchitecture alteration with reduced marginal zone Blymphocytes. Upon exposure to inactivated vesiculo-stomatitis virus, antibody production was abolished, although splenic lymphocytes were activated and total IgG was elevated. Our data imply that HIV itself may directly contribute to immune activation and dysfunction by stimulating TLR7. Thus, manipulation of TLR7 signaling may be a potential strategy to reduce chronic hyper-immune activation and, thereby, disease progression in HIV infection. (Blood. 2009;113:377-388) IntroductionProgressive CD4 ϩ T-cell depletion and chronic immune activation are hallmarks of HIV infection. Chronic immune activation includes aberrant cytokine production, redistribution of lymphocyte subpopulations, polyclonal B-cell activation, increased T-cell turnover, and increased numbers of activated T cells.Several observations suggest a crucial role of chronic immune activation in HIV pathogenesis: (1) Increased numbers of activated CD4 ϩ T cells expressing the activation markers CD69, CD25, and MHC class II and activated CD8 ϩ T cells expressing the activation marker CD38 correlate with HIV disease progression and CD4 ϩ T-cell loss in untreated infection; 1 (2) Immune activation is absent in nonpathogenic simian immunodeficiency virus (SIV) infection. In particular, the natural hosts of SIV, sooty mangabeys and African green monkeys, show only minimal increases in immune activation and rarely progress to immunodeficiency despite high levels of viral replication 2 ; (3) Immune activation facilitates HIV infection of T cells by promoting co-receptor, adhesion molecule, and nuclear factor (NF)-B expression; 3-5 (4) Persistent immune activation in mice that constitutively express CD70 can induce lethal T-cell immunodeficiency. 6 The precise mechanism and underlying trigger by which HIV causes immune activation remain poorly understood: Schindler and colleagues 7 noted that Nef from nonpathogenic SIV strains mediated down-modulation of the host T-cell receptor and thereby suppressed T-cell activation, whereas Nef from HIV did not. This hypothesis remains controversial when considering that only a small fraction...
TLRs trigger innate immunity by recognizing conserved motifs of microorganisms. Recently, ssRNAs from HIV and influenza virus were shown to trigger TLR7 and 8. Thus, we hypothesized that HIV ssRNA, by triggering TLR7/8, affects HIV pathogenesis. Indeed, HIV ssRNA rendered human lymphoid tissue of tonsillar origin or PBMC barely permissive to HIV replication. The synthetic compound R-848, which also triggers TLR7/8, showed similar anti-HIV activity. Loss of R-848’s activity in lymphoid tissue depleted of B cells suggested a role for B cells in innate immunity. TLR7/8 triggering appears to exert antiviral effects through soluble factors: conditioned medium reduced HIV replication in indicator cells. Although a number of cytokines and chemokines were increased upon adding R-848 to lymphoid tissue, blocking those cytokines/chemokines (i.e., IFN-α receptor, IFN-γ, MIP-1α, -1β, RANTES, and stromal cell-derived factor-1) did not result in the reversal of R-848’s anti-HIV activity. Thus, the nature of this soluble factor(s) remains unknown. Unlike lymphoid tissue acutely infected with HIV, triggering latently infected promonocytic cells induced the release of HIV virions. The anti-HIV effects of triggering TLR7/8 may inhibit rapid killing, while pro-HIV effects may guarantee a certain replication level. Compounds triggering TLR7/8 may be attractive drug candidates to purge latent HIV while preventing new infections.
Background Humanized mice generate a lymphoid system of human origin subsequent to transplantation of human CD34+ cells and thus are highly susceptible to HIV infection. Here we examined the efficacy of antiretroviral treatment (ART) when added to food pellets, and of long-acting (LA) antiretroviral compounds, either as monotherapy or in combination. These studies shall be inspiring for establishing a gold standard of ART, which is easy to administer and well supported by the mice, and for subsequent studies such as latency. Furthermore, they should disclose whether viral breakthrough and emergence of resistance occurs similar as in HIV-infected patients when ART is insufficient. Methods/Principal Findings NOD/shi-scid/γ c null (NOG) mice were used in all experimentations. We first performed pharmacokinetic studies of the drugs used, either added to food pellets (AZT, TDF, 3TC, RTV) or in a LA formulation that permitted once weekly subcutaneous administration (TMC278: non-nucleoside reverse transcriptase inhibitor, TMC181: protease inhibitor). A combination of 3TC, TDF and TMC278-LA or 3TC, TDF, TMC278-LA and TMC181-LA suppressed the viral load to undetectable levels in 15/19 (79%) and 14/14 (100%) mice, respectively. In successfully treated mice, subsequent monotherapy with TMC278-LA resulted in viral breakthrough; in contrast, the two LA compounds together prevented viral breakthrough. Resistance mutations matched the mutations most commonly observed in HIV patients failing therapy. Importantly, viral rebound after interruption of ART, presence of HIV DNA in successfully treated mice and in vitro reactivation of early HIV transcripts point to an existing latent HIV reservoir. Conclusions/Significance This report is a unique description of multiple aspects of HIV infection in humanized mice that comprised efficacy testing of various treatment regimens, including LA compounds, resistance mutation analysis as well as viral rebound after treatment interruption. Humanized mice will be highly valuable for exploring the antiviral potency of new compounds or compounds targeting the latent HIV reservoir.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.