We investigate laser-induced ultrasound generated in a plane semi-transparent layered polymer structure. The scope is to study relations between generated ultrasound, as e.g. amplitude, and centre frequency and bandwidth of its frequency spectrum, and properties of the polymer layers, like thickness and absorption. This knowledge can then be used when designing polymer film based, semi-transparent ultrasonic devices specifically for photoacoustic applications. The experimental study is set-up as a factorial experiment with a completely randomised design.In the experiments, the light source is a pulsed Nd:YAG laser. As absorber, a semi-transparent, non-conductive polymer film in a plane layered structure of one or more layers on a glass substrate is used. The frequency spectra of the generated ultrasound spans 2 to 20 MHz, which is recorded by a broadband PVDF ultrasonic transducer. The results show that an increased thickness of the polymer layer structure relate to a lower center frequency and a lower bandwidth, and that an increased optical absorption and a decreased layer structure thickness is related to a higher ultrasound amplitude.
Abstract-This paper presents a method for predicting the ultrasound pulses generated by thin semi-transparent polymer films, excited by a short laser pulse. The acoustic pressure is first modeled based on the physical properties of the polymer. Partial Least-Squares Regression is then used to link the model pressure to the ultrasound pulses measured by an ultrasound transducer. The uncertainty of the regression is also simulated, showing that the method is robust to noise in the measurements.
Ultrasound generated by means of laser-based photoacoustic principles are in common use today and applications can be found both in biomedical diagnostics, non-destructive testing and materials characterisation. For certain measurement applications it could be beneficial to shape the generated ultrasound regarding spectral properties and temporal profile. To address this, we studied the generation and propagation of laser-induced ultrasound in a planar, layered structure. We derived an analytical expression for the induced pressure wave, including different physical and optical properties of each layer. A Laplace transform approach was employed in analytically solving the resulting set of photoacoustic wave equations. The results correspond to simulations and were compared to experimental results. To enable the comparison between recorded voltage from the experiments and the calculated pressure we employed a system identification procedure based on physical properties of the ultrasonic transducer to convert the calculated acoustic pressure to voltages. We found reasonable agreement between experimentally obtained voltages and the voltages determined from the calculated acoustic pressure, for the samples studied. The system identification procedure was found to be unstable, however, possibly from violations of material isotropy assumptions by film adhesives and coatings in the experiment. The presented analytical model can serve as a basis when addressing the inverse problem of shaping an acoustic pulse from absorption of a laser pulse in a planar layered structure of elastic materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.