Study Objectives The amount of recovery sleep needed to fully restore well-established neurobehavioral deficits from sleep loss remains unknown, as does whether the recovery pattern differs across measures after total sleep deprivation (TSD) and chronic sleep restriction (SR). Methods 83 adults received two baseline nights (10-12h time-in-bed, TIB) followed by five 4h TIB SR nights or 36h TSD, and four recovery nights (R1-R4; 12h TIB). Neurobehavioral tests were completed every 2h during wakefulness and a Maintenance of Wakefulness Test measured physiological sleepiness. Polysomnography was collected on B2, R1, and R4 nights. Results TSD and SR produced significant deficits in cognitive performance, increases in self-reported sleepiness and fatigue, decreases in vigor, and increases in physiological sleepiness. Neurobehavioral recovery from SR occurred after R1 and was maintained for all measures except Psychomotor Vigilance Test (PVT) lapses and response speed, which failed to completely recover. Neurobehavioral recovery from TSD occurred after R1 and was maintained for all cognitive and self-reported measures, except for vigor. After TSD and SR, R1 recovery sleep was longer, and of higher efficiency and better quality than R4 sleep. Conclusion PVT impairments from SR failed to reverse completely; by contrast, vigor did not recover after TSD; all other deficits were reversed after sleep loss. These results suggest TSD and SR induce sustained, differential biological, physiological and/or neural changes, which remarkably are not reversed with chronic, long duration recovery sleep. Our findings have critical implications for the population at-large and for military and health professionals.
Study Objectives Sleep loss produces large individual differences in neurobehavioral responses, with marked vulnerability or resilience among individuals. Such differences are stable with repeated exposures to acute total sleep deprivation (TSD) or chronic sleep restriction (SR) within short (weeks) and long (years) intervals. Whether trait-like responses are observed to commonly experienced types of sleep loss and across various demographically defined groups remains unknown. Methods Eighty-three adults completed two baseline nights (10 h–12 h time-in-bed, TIB) followed by five 4 h TIB SR nights or 36 h TSD. Participants then received four 12-h TIB recovery nights followed by five SR nights or 36 h TSD, in counterbalanced order to the first sleep loss sequence. Neurobehavioral tests were completed every 2 h during wakefulness. Results Participants who displayed neurobehavioral vulnerability to TSD displayed vulnerability to SR, evidenced by substantial to near perfect intraclass correlation coefficients (ICCs; 78%–91% across measures). Sex, race, age, body mass index (BMI), season, and sleep loss order did not impact ICCs significantly. Individuals exhibited significant consistency of responses within, but not between, performance and self-reported domains. Conclusions Using the largest, most diverse sample to date, we demonstrate for the first time the remarkable stability of phenotypic neurobehavioral responses to commonly experienced sleep loss types, across demographic variables and different performance and self-reported measures. Since sex, race, age, BMI, and season did not affect ICCs, these variables are not useful for determining stability of responses to sleep loss, underscoring the criticality of biological predictors. Our findings inform mathematical models and are relevant for the general population and military and health professions.
There are substantial individual differences (resilience and vulnerability) in performance resulting from sleep loss and psychosocial stress, but predictive potential biomarkers remain elusive. Similarly, marked changes in the cardiovascular system from sleep loss and stress include an increased risk for cardiovascular disease. It remains unknown whether key hemodynamic markers, including left ventricular ejection time (LVET), stroke volume (SV), heart rate (HR), cardiac index (CI), blood pressure (BP), and systemic vascular resistance index (SVRI), differ in resilient vs. vulnerable individuals and predict differential performance resilience with sleep loss and stress. We investigated for the first time whether the combination of total sleep deprivation (TSD) and psychological stress affected a comprehensive set of hemodynamic measures in healthy adults, and whether these measures differentiated neurobehavioral performance in resilient and vulnerable individuals. Thirty-two healthy adults (ages 27–53; 14 females) participated in a 5-day experiment in the Human Exploration Research Analog (HERA), a high-fidelity National Aeronautics and Space Administration (NASA) space analog isolation facility, consisting of two baseline nights, 39 h TSD, and two recovery nights. A modified Trier Social Stress Test induced psychological stress during TSD. Cardiovascular measure collection [SV, HR, CI, LVET, BP, and SVRI] and neurobehavioral performance testing (including a behavioral attention task and a rating of subjective sleepiness) occurred at six and 11 timepoints, respectively. Individuals with longer pre-study LVET (determined by a median split on pre-study LVET) tended to have poorer performance during TSD and stress. Resilient and vulnerable groups (determined by a median split on average TSD performance) showed significantly different profiles of SV, HR, CI, and LVET. Importantly, LVET at pre-study, but not other hemodynamic measures, reliably differentiated neurobehavioral performance during TSD and stress, and therefore may be a biomarker. Future studies should investigate whether the non-invasive marker, LVET, determines risk for adverse health outcomes.
Study Objectives Although trait-like individual differences in subjective responses to sleep restriction (SR) and total sleep deprivation (TSD) exist, reliable characterizations remain elusive. We comprehensively compared multiple methods for defining resilience and vulnerability by subjective metrics. Methods 41 adults participated in a 13-day experiment:2 baseline, 5 SR, 4 recovery, and one 36h TSD night. The Karolinska Sleepiness Scale (KSS) and the Profile of Mood States Fatigue (POMS-F) and Vigor (POMS-V) were administered every 2h. Three approaches (Raw Score [average SR score], Change from Baseline [average SR minus average baseline score], and Variance [intraindividual SR score variance]), and six thresholds (±1 standard deviation, and the highest/lowest scoring 12.5%, 20%, 25%, 33%, 50%) categorized Resilient/Vulnerable groups. Kendall’s tau-b correlations compared the group categorization’s concordance within and between KSS, POMS-F, and POMS-V scores. Bias-corrected and accelerated bootstrapped t-tests compared group scores. Results There were significant correlations between all approaches at all thresholds for POMS-F, between Raw Score and Change from Baseline approaches for KSS, and between Raw Score and Variance approaches for POMS-V. All Resilient groups defined by the Raw Score approach had significantly better scores throughout the study, notably including during baseline and recovery, whereas the two other approaches differed by measure, threshold, or day. Between-measure correlations varied in strength by measure, approach, or threshold. Conclusion Only the Raw Score approach consistently distinguished Resilient/Vulnerable groups at baseline, during sleep loss, and during recovery‒‒we recommend this approach as an effective method for subjective resilience/vulnerability categorization. All approaches created comparable categorizations for fatigue, some were comparable for sleepiness, and none were comparable for vigor. Fatigue and vigor captured resilience/vulnerability similarly to sleepiness but not each other.
Study Objectives Sleep restriction (SR) and total sleep deprivation (TSD) reveal well-established individual differences in Psychomotor Vigilance Test (PVT) performance. While prior studies have used different methods to categorize such resiliency/vulnerability, none have systematically investigated whether these methods categorize individuals similarly. Methods 41 adults participated in a 13-day laboratory study consisting of 2 baseline, 5 SR, 4 recovery, and one 36h TSD night. The PVT was administered every 2h during wakefulness. Three approaches (Raw Score [average SR performance], Change from Baseline [average SR minus average baseline performance], and Variance [intraindividual variance of SR performance]), and within each approach, six thresholds (±1 standard deviation and the best/worst performing 12.5%, 20%, 25%, 33%, and 50%) classified Resilient/Vulnerable groups. Kendall’s tau-b correlations examined the concordance of group categorizations of approaches within and between PVT lapses and 1/reaction time (RT). Bias-corrected and accelerated bootstrapped t-tests compared group performance. Results Correlations comparing the approaches ranged from moderate to perfect for lapses and zero to moderate for 1/RT. Defined by all approaches, the Resilient groups had significantly fewer lapses on nearly all study days. Defined by the Raw Score approach only, the Resilient groups had significantly faster 1/RT on all study days. Between-measures comparisons revealed significant correlations between the Raw Score approach for 1/RT and all approaches for lapses. Conclusion The three approaches defining vigilant attention resiliency/vulnerability to sleep loss resulted in groups comprised of similar individuals for PVT lapses but not for 1/RT. Thus, both method and metric selection for defining vigilant attention resiliency/vulnerability to sleep loss is critical.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.