L-Amino acid oxidase (LAO) was purified from mouse milk. LAO reacted with L-amino acids in an apparent order of Phe > Met, Tyr > Cys, Leu > His > > other 11 amino acids tested and produced H 2 O 2 in a dose-and time-dependent manner. LAO in milk had a molecular mass of about 113 kDa and was converted to a 60-kDa protein by SDS-PAGE. LAO consisted of two subunits. The N-and C-terminal amino acid sequence determination followed by cDNA cloning showed that the 60-kDa protein consisted of 497 amino acids. LAO mRNA spanned about 2.0 kb, and its expression was found only in the mammary epithelial cells. Glucocorticoid was essential for LAO gene expression. Thus, the LAO gene is expressed acutely upon the onset of milk synthesis. LAO mRNA increased 1 day before parturition, peaked during early to mid-lactation, and decreased at the end of lactation. This is the first demonstration showing that LAO is present in milk. Mastitis is caused by an intramammary bacterial infection. As mouse milk produced H 2 O 2 using endogenous free amino acids, we suggest that LAO, together with free amino acids, is responsible for killing bacteria in the mammary gland.
To further elucidate the molecular mechanisms underlying the transcriptional regulation of the GHRH receptor (GHRH-R) gene, hormonal regulation of the promoter activity of this gene was examined. An approximately 3-kb genomic fragment spanning the promoter region of the gene was sequenced and the transcription start site was determined by RT-PCR and RNase protection assay. A major start site was localized at -105 (relative to the translation initiation codon, ATG), and a pit-1 binding sequence characteristic of pituitary specific genes was found at -155 to -146. Deletion and mutation studies demonstrated this site to be functional. In the presence of dexamethasone, the GHRH-R promoter (from -2935 to -11) directed luciferase expression in MtT-S cells, a somatotropic cell line, but not in the PC12 cells that normally do not express GHRH-R. While T(3), all trans-RA, and 9cis-RA alone weakly enhanced the reporter gene expression, each of these substances was found to act as a synergistic enhancer in the presence of dexamethasone. Additional deletion and mutation analyses demonstrated a functional RA response element at -1090 to -1074. Two functional glucocorticoid response elements and a T(3) response element were found in an 80-bp 5'-flanking sequence of the pit-1 site. Interestingly, it is suggested that the 6-bp half-site AGGACA (from -209 to -204) functions as a 3'-half-site of T(3) response element as well as a 5'-half-site of one of the glucocorticoid response elements.
Mastitis is the most frequent and prevalent production disease in dairy herds in developed countries. Based on a milk somatic cell count (SCC) of either >300,000 or <200,000 cells/ml in this study, we defined the quarter as either inflamed or uninflamed, respectively. The electrical conductivity (EC) of milk was used as an indicator of udder epithelial cell damage. We determined the amount of H2O2 produced by utilizing a small molecular weight compound in milk, and examined the characteristics of H2O2 production and EC in milk from inflamed and uninflamed quarters. In cows with milk of delivery grade (control population), H2O2 production and EC were 3.6+/-1.3 nmol/ml and 5.4+/-0.4 mS/cm (mean+/-sd), respectively. In 37 inflamed quarter milk samples, the production of H2O2 was 1.9+/-1.0 nmol/ml and was significantly smaller than that in the control population (P<0.01). Production of H2O2 was moderately but significantly correlated with EC (r<-0.71). In 20 cows with inflamed quarters, the production of H2O2 in milk from inflamed quarters was significantly smaller than that in milk from uninflamed quarters (P<0.01). In 18 out of 20 cows, milk from inflamed quarters showed the smallest H2O2 production among all tested quarters in each cow. We conclude that inflammation caused a decrease in H2O2 production in milk. In this study, we present parameters for evaluating the lactoperoxidase/H2O2/thiocyanate antibacterial defence system in bovine milk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.