Zinc is an essential trace element required for enzymatic activity and for maintaining the conformation of many transcription factors; thus, zinc homeostasis is tightly regulated. Although zinc affects several signaling molecules and may act as a neurotransmitter, it remains unknown whether zinc acts as an intracellular second messenger capable of transducing extracellular stimuli into intracellular signaling events. In this study, we report that the cross-linking of the high affinity immunoglobin E receptor (Fcɛ receptor I [FcɛRI]) induced a release of free zinc from the perinuclear area, including the endoplasmic reticulum in mast cells, a phenomenon we call the zinc wave. The zinc wave was dependent on calcium influx and mitogen-activated protein kinase/extracellular signal-regulated kinase kinase activation. The results suggest that the zinc wave is involved in intracellular signaling events, at least in part by modulating the duration and strength of FcɛRI-mediated signaling. Collectively, our findings indicate that zinc is a novel intracellular second messenger.
SignificanceThe entry of inorganic carbon (Ci; CO2 and HCO3–) into cells involves many biological processes in both animals and plants, and aquaporins as well as bicarbonate transporters play roles in Ci transport. Although transporting external HCO3– into the stroma through the chloroplast envelope is one of the rate-limiting factors for aquatic photosynthetic organisms, specific molecular components in this process have not yet been identified experimentally. Molecular identification of proteins essential for Ci uptake located in the chloroplast envelope and in the plasma membrane documented in this study helps in understanding how aquatic photosynthetic organisms developed machinery to acclimate to CO2-limiting environment and to maintain adequate levels of photosynthesis for survival or growth.
Zinc (Zn) is an essential nutrient, and its deficiency causes growth retardation, immunodeficiency, and neuronal degeneration. However, the precise roles and molecular mechanism(s) of Zn function in immune response have not been clarified. Mast cells (MCs) are granulated cells that play a pivotal role in allergic reactions and inflammation. The granules of MCs contain various chemical mediators and inflammatory cytokines that are released upon FcεRI cross-linking. In this study, we report that Zn is essential for MC activation both in vitro and in vivo. We showed that a Zn chelator, N,N,N,N-tetrakis (2-pyridylmethyl) ethylenediamine, inhibited in vivo allergic reactions such as PCA and PSA. Consistent with this, N,N,N,N-tetrakis (2-pyridylmethyl) ethylenediamine significantly inhibited the FcεRI-induced degranulation and cytokine production. We found that Zn was required for FcεRI-induced translocation of granules to the plasma membrane, a process that we have shown to be important for MC degranulation. In addition, we showed that Zn was essential for plasma membrane translocation of protein kinase C and subsequent nuclear translocation of NF-κB, leading to cytokine production, such as IL-6 and TNF-α. These results revealed that Zn was involved in multiple steps of FcεRI-induced MC activation and required for degranulation and cytokine production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.