Primary progressive aphasia (PPA) is a cognitive syndrome characterized by progressive and isolated language impairments due to neurodegenerative diseases. Recently, an international group of experts published a Consensus Classification of the three PPA clinical variants (naPPA, svPPA and lvPPA). We analyzed 24 patients with PPA by cognitive functions, neuroimaging (MRI, (99 m)Tc ECD-SPECT, (11)C PiB-PET and FDG-PET) and cerebrospinal fluid (CSF) analysis (ptau-181, Aβ1-42, Aβ1-40 and Aβ1-38), to elucidate relationships between neuroimaging studies and biochemical findings in the three PPA clinical variants. Cognitive and speech functions were measured by mini-mental state examination and standard language test of aphasia. The patients with lvPPA showed significant decreases in CSF Aβ1-42 and ratios of Aβ1-42/Aβ1-40 and Aβ1-42/Aβ1-38, and significant increases in CSF ptau-181 and ratios of ptau-181/Aβ1-42 and ptau-181/Aβ1-38; these findings were similar to those of patients with Alzheimer's disease (AD). We observed a higher frequency of the ApoE ε4 allele in the lvPPA patients relative to the two other PPA variants. In (11)C PiB-PET of lvPPA patients, PiB positive findings were detected in cortices of frontal, temporal and parietal lobes and the posterior cingulate, where massive Aβ may accumulate due to AD. Our results of AD-CSF markers including Aβ1-38 and (11)C PiB-PET in the lvPPA patients demonstrate a common pathological mechanism with the occurrence of AD.
We studied seven cases of Alzheimer's disease (AD). Six of the patients had presenilin 1 (PS1) mutations (PS1AD). Three novel PS1 mutations (T99A, H131R and L219R) and three other missense mutations (M233L, H163R and V272A) were found in the PS1AD group. We measured the levels of phosphorylated tau (ptau-181, ptau-199) and Aβ (Aβ1-42, Aβ1-40 and Aβ1-38) in the cerebrospinal fluid (CSF) of PS1AD patients, early-onset sporadic AD (EOSAD), late-onset sporadic AD (LOSAD) and non-demented subjects (ND). The CSF levels of Aβ1-42 in the three AD groups were significantly lower than those of the ND group (p < 0.0001). CSF levels of Aβ1-42 in the PS1AD group were significantly lower than those in the two sporadic AD groups. The Aβ1-40 and Aβ1-38 levels in the CSF of the PS1AD group were significantly lower than those of the three other groups (p < 0.0001, respectively). The levels of Aβ1-40, Aβ1-38 and Aβ1-42 in the CSF of the PS1AD group remained lower than those of the ND group for 4 years. Not only CSF Aβ1-42, but also Aβ1-40 and Aβ1-38 decreased in the advanced stages of PS1AD.
Lobar cerebral microbleeds (CMBs) in Alzheimer's disease (AD) are associated with cerebral amyloid angiopathy (CAA) due to vascular amyloid beta (Aβ) deposits. However, the relationship between lobar CMBs and clinical subtypes of AD remains unknown. Here, we enrolled patients with early- and late-onset amnestic dominant AD, logopenic variant of primary progressive aphasia (lvPPA) and posterior cortical atrophy (PCA) who were compatible with the AD criteria. We then examined the levels of cerebrospinal fluid (CSF) biomarkers [Aβ1-42, Aβ1-40, Aβ1-38, phosphorylated tau 181 (P-Tau), total tau (T-Tau), neurofilament light chain (NFL), and chitinase 3-like 1 protein (YKL-40)], analyzed the number and localization of CMBs, and measured the cerebral blood flow (CBF) volume by 99mTc-ethyl cysteinate dimer single photon emission computerized tomography (99mTc ECD-SPECT), as well as the mean cortical standard uptake value ratio by 11C-labeled Pittsburgh Compound B-positron emission tomography (11C PiB-PET). Lobar CMBs in lvPPA were distributed in the temporal, frontal, and parietal lobes with the left side predominance, while the CBF volume in lvPPA significantly decreased in the left temporal area, where the number of lobar CMBs and the CBF volumes showed a significant inversely correlation. The CSF levels of NFL in lvPPA were significantly higher compared to the other AD subtypes and non-demented subjects. The numbers of lobar CMBs significantly increased the CSF levels of NFL in the total AD patients, additionally, among AD subtypes, the CSF levels of NFL in lvPPA predominantly were higher by increasing number of lobar CMBs. On the other hand, the CSF levels of Aβ1-38, Aβ1-40, Aβ1-42, P-Tau, and T-Tau were lower by increasing number of lobar CMBs in the total AD patients. These findings may suggest that aberrant brain hypoperfusion in lvPPA was derived from the brain atrophy due to neurodegeneration, and possibly may involve the aberrant microcirculation causing by lobar CMBs and cerebrovascular injuries, with the left side dominance, consequently leading to a clinical phenotype of logopenic variant.
In Alzheimer's disease, the apolipoprotein E gene (APOE) ε2 allele is a protective genetic factor, whereas the APOE ε4 allele is a genetic risk factor. However, both the APOE ε2 and the APOE ε4 alleles are genetic risk factors for lobar intracerebral hemorrhage. The reasons for the high prevalence of lobar intracerebral hemorrhage and the low prevalence of Alzheimer's disease with the APOE ε2 allele remains unknown. Here, we describe the case of a 79-year-old Japanese female with Alzheimer's disease, homozygous for the APOE ε2 allele. This patient presented with recurrent lobar hemorrhages and multiple cortical superficial siderosis. The findings on the 11C-labeled Pittsburgh Compound B-positron emission tomography (PET) were characteristic of Alzheimer's disease. 18F-THK5351 PET revealed that the accumulation of 18F-THK 5351 in the right pyramidal tract at the pontine level, the cerebral peduncle of the midbrain, and the internal capsule, reflecting the lesions of the previous lobar intracerebral hemorrhage in the right frontal lobe. Moreover, 18F-THK5351 accumulated in the bilateral globus pallidum, amygdala, caudate nuclei, and the substantia nigra of the midbrain, which were probably off-target reaction, by binding to monoamine oxidase B (MAO-B). 18F-THK5351 were also detected in the periphery of prior lobar hemorrhages and a cortical subarachnoid hemorrhage, as well as in some, but not all, areas affected by cortical siderosis. Besides, 18F-THK5351 retentions were observed in the bilateral medial temporal cortices and several cortical areas without cerebral amyloid angiopathy or prior hemorrhages, possibly where tau might accumulate. This is the first report of a patient with Alzheimer's disease, carrying homozygous APOE ε2 allele and presenting with recurrent lobar hemorrhages, multiple cortical superficial siderosis, and immunohistochemically vascular amyloid β. The 18F-THK5351 PET findings suggested MAO-B concentrated regions, astroglial activation, Waller degeneration of the pyramidal tract, neuroinflammation due to CAA related hemorrhages, and possible tau accumulation.
Neuroimages of cerebral amyloid- (A) accumulation and small vessel disease (SVD) were examined in patients with various types of cognitive disorders using 11 C-labeled Pittsburgh Compound B-positron emission tomography (PiB-PET) and magnetic resonance imaging (MRI). The mean cortical standardized uptake value ratio (mcSUVR) was applied for a quantitative analysis of PiB-PET data. The severity of white matter lesions (WML) and enlarged perivascular spaces (EPVS) on MRI were assessed to evaluate complicating cerebral SVD using semiquantitative scales. In homozygous apolipoprotein E 3/3 carriers, the incidence of more severe WML and EPVS was higher in PiB-positive than PiB-negative patients, indicating that WML and EPVS might be associated with enhanced A accumulation. An association study between PiB-PET and MRI findings revealed that higher WML grades significantly correlate with lower mcSUVRs, especially in the frontal area, indicating that more severe ischemic MRI findings are associated with milder A accumulation among patients with Alzheimer's disease. In these patients SVD may accelerate the occurrence of cognitive decline and facilitate early recognition of dementia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.