BackgroundRetinal vasculopathies, including diabetic retinopathy (DR), threaten the vision of over 100 million people. Retinal pericytes are critical for microvascular control, supporting retinal endothelial cells via direct contact and paracrine mechanisms. With pericyte death or loss, endothelial dysfunction ensues, resulting in hypoxic insult, pathologic angiogenesis, and ultimately blindness. Adipose-derived stem cells (ASCs) differentiate into pericytes, suggesting they may be useful as a protective and regenerative cellular therapy for retinal vascular disease. In this study, we examine the ability of ASCs to differentiate into pericytes that can stabilize retinal vessels in multiple pre-clinical models of retinal vasculopathy.Methodology/Principal FindingsWe found that ASCs express pericyte-specific markers in vitro. When injected intravitreally into the murine eye subjected to oxygen-induced retinopathy (OIR), ASCs were capable of migrating to and integrating with the retinal vasculature. Integrated ASCs maintained marker expression and pericyte-like morphology in vivo for at least 2 months. ASCs injected after OIR vessel destabilization and ablation enhanced vessel regrowth (16% reduction in avascular area). ASCs injected intravitreally before OIR vessel destabilization prevented retinal capillary dropout (53% reduction). Treatment of ASCs with transforming growth factor beta (TGF-β1) enhanced hASC pericyte function, in a manner similar to native retinal pericytes, with increased marker expression of smooth muscle actin, cellular contractility, endothelial stabilization, and microvascular protection in OIR. Finally, injected ASCs prevented capillary loss in the diabetic retinopathic Akimba mouse (79% reduction 2 months after injection).Conclusions/SignificanceASC-derived pericytes can integrate with retinal vasculature, adopting both pericyte morphology and marker expression, and provide functional vascular protection in multiple murine models of retinal vasculopathy. The pericyte phenotype demonstrated by ASCs is enhanced with TGF-β1 treatment, as seen with native retinal pericytes. ASCs may represent an innovative cellular therapy for protection against and repair of DR and other retinal vascular diseases.
Expansion of a stretch of polyglutamine in huntingtin (htt), the protein product of the IT15 gene, causes Huntington's disease (HD). Previous investigations into the role of the polyglutamine stretch (polyQ) in htt function have suggested that its length may modulate a normal htt function involved in regulating energy homeostasis. Here we show that expression of full-length htt lacking its polyglutamine stretch (ΔQ-htt) in a knockin mouse model for HD (Hdh140Q/ΔQ), reduces significantly neuropil mutant htt aggregates, ameliorates motor/behavioral deficits, and extends lifespan in comparison to the HD model mice (Hdh140Q/+). The rescue of HD model phenotypes is accompanied by the normalization of lipofuscin levels in the brain and an increase in the steady-state levels of the mammalian autophagy marker microtubule-associate protein 1 light chain 3-II (LC3-II). We also find that ΔQ-htt expression in vitro increases autophagosome synthesis and stimulates the Atg5-dependent clearance of truncated N-terminal htt aggregates. ΔQ-htt's effect on autophagy most likely represents a gain-of-function, as overexpression of full-length wild-type htt in vitro does not increase autophagosome synthesis. Moreover, HdhΔQ/ΔQ mice live significantly longer than wild-type mice, suggesting that autophagy upregulation may be beneficial both in diseases caused by toxic intracellular aggregate-prone proteins and also as a lifespan extender in normal mammals.
Huntingtin (htt), the protein encoded by the Huntington's disease (HD) gene, contains a polymorphic stretch of glutamines (polyQ) near its N-terminus. When the polyQ stretch is expanded beyond 37Q, HD results. However, the role of the normal polyQ stretch in the function of htt is still unknown. To determine the contribution of the polyQ stretch to normal htt function, we have generated mice with a precise deletion of the short CAG triplet repeat encoding 7Q in the mouse HD gene (Hdh(DeltaQ)). Hdh(DeltaQ/DeltaQ) mice are born with normal Mendelian frequency and exhibit no gross phenotypic differences in comparison to control littermates, suggesting that the polyQ stretch is not essential for htt's functions during embryonic development. Adult mice, however, commit more errors initially in the Barnes circular maze learning and memory test and perform slightly better than wild-type controls in the accelerating rotarod test for motor coordination. To determine whether these phenotypes may reflect an altered cellular physiology in the Hdh(DeltaQ) mice, we characterized the growth and energy status of primary embryonic and adult Hdh(DeltaQ/DeltaQ) fibroblasts in culture. The Hdh(DeltaQ) fibroblasts exhibited elevated levels of ATP, but senesced prematurely in comparison with wild-type fibroblasts. Taken altogether, these results suggest that htt's polyQ stretch is required for modulating longevity in culture and support the hypothesis that the polyQ stretch may also modulate a htt function involved in regulating energy homeostasis.
The N-terminus of Huntingtin, the protein encoded by the Huntington’s disease gene, contains a stretch of polyglutamine residues that is expanded in Huntington’s disease. The polyglutamine stretch is flanked by two conserved protein domains in vertebrates: an N1-17 domain, and a proline-rich region (PRR). The PRR can modulate the structure of the adjacent polyglutamine stretch, and is a binding site for several interacting proteins. To determine the role of the PRR in Huntingtin function, we have generated a knock-in allele of the mouse Huntington’s disease gene homolog that expresses full-length normal huntingtin lacking the PRR. Mice that are homozygous for the huntingtin PRR deletion are born at the normal Mendelian frequency, suggesting that the PRR is not required for essential huntingtin functions during embryonic development. Moreover, adult homozygous mutants did not exhibit any significant differences from wild-type controls in general motor function and motor learning. However, 18 month-old male, but not female, homozygous PRR deletion mutants exhibited deficits in the Morris water task, suggesting that age-dependent spatial learning and memory may be affected in a sex-specific fashion by the huntingtin PRR deletion.
Background: Retinal vasculopathies, including diabetic retinopathy (DR), threaten the vision of over 100 million people. Retinal pericytes are critical for microvascular control, supporting retinal endothelial cells via direct contact and paracrine mechanisms. With pericyte death or loss, endothelial dysfunction ensues, resulting in hypoxic insult, pathologic angiogenesis, and ultimately blindness. Adipose-derived stem cells (ASCs) differentiate into pericytes, suggesting they may be useful as a protective and regenerative cellular therapy for retinal vascular disease. In this study, we examine the ability of ASCs to differentiate into pericytes that can stabilize retinal vessels in multiple pre-clinical models of retinal vasculopathy.Methodology/Principal Findings: We found that ASCs express pericyte-specific markers in vitro. When injected intravitreally into the murine eye subjected to oxygen-induced retinopathy (OIR), ASCs were capable of migrating to and integrating with the retinal vasculature. Integrated ASCs maintained marker expression and pericyte-like morphology in vivo for at least 2 months. ASCs injected after OIR vessel destabilization and ablation enhanced vessel regrowth (16% reduction in avascular area). ASCs injected intravitreally before OIR vessel destabilization prevented retinal capillary dropout (53% reduction). Treatment of ASCs with transforming growth factor beta (TGF-b1) enhanced hASC pericyte function, in a manner similar to native retinal pericytes, with increased marker expression of smooth muscle actin, cellular contractility, endothelial stabilization, and microvascular protection in OIR. Finally, injected ASCs prevented capillary loss in the diabetic retinopathic Akimba mouse (79% reduction 2 months after injection).Conclusions/Significance: ASC-derived pericytes can integrate with retinal vasculature, adopting both pericyte morphology and marker expression, and provide functional vascular protection in multiple murine models of retinal vasculopathy. The pericyte phenotype demonstrated by ASCs is enhanced with TGF-b1 treatment, as seen with native retinal pericytes. ASCs may represent an innovative cellular therapy for protection against and repair of DR and other retinal vascular diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.