Highlights
Laser-capture microdissection (LCM) followed by RNAseq reveals detailed insights into COSCC and molecular homologies to HNSCC.
Identification of CDK4/6 as therapeutic vulnerability in COSCC.
This underlines the potential of spontaneous COSCC as a model for HNSCC to interrogate therapeutic vulnerabilities and support translation of novel therapies from bench to bedside.
Background: Base-excision repair (BER) is a central DNA repair mechanism responsible for the maintenance of genome integrity. Accordingly, BER defects have been implicated in cancer, presumably by precipitating cellular transformation through an increase in the occurrence of mutations. Hence, tight adaptation of BER capacity is essential for DNA stability. However, counterintuitive to this, prolonged exposure of cells to pro-inflammatory molecules or DNA-damaging agents causes a BER deficiency by downregulating the central scaffold protein XRCC1. The rationale for this XRCC1 downregulation in response to persistent DNA damage remains enigmatic. Based on our previous findings that XRCC1 downregulation causes wide-ranging anabolic changes, we hypothesised that BER depletion could enhance cellular survival under stress, such as nutrient restriction. Results: Here, we demonstrate that persistent single-strand breaks (SSBs) caused by XRCC1 downregulation trigger the integrated stress response (ISR) to promote cellular survival under nutrient-restricted conditions. ISR activation depends on DNA damage signalling via ATM, which triggers PERK-mediated eIF2α phosphorylation, increasing translation of the stress-response factor ATF4. Furthermore, we demonstrate that SSBs, induced either through depletion of the transcription factor Sp1, responsible for XRCC1 levels, or through prolonged oxidative stress, trigger ISR-mediated cell survival under nutrient restriction as well. Finally, the ISR pathway can also be initiated by persistent DNA double-strand breaks. Conclusions: Our results uncover a previously unappreciated connection between persistent DNA damage, caused by a decrease in BER capacity or direct induction of DNA damage, and the ISR pathway that supports cell survival in response to genotoxic stress with implications for tumour biology and beyond.
Cancer-associated stroma (CAS) profoundly influences progression of tumors including mammary carcinoma (mCA). Canine simple mCA represent relevant models of human mCA, notably also with respect to CAS. While transcriptomic changes in CAS of mCA are well described, it remains unclear to what extent these translate to the protein level. Therefore, we sought to gain insight into the proteomic changes in CAS and compare them with transcriptomic changes in the same tissue. To this end, we analyzed CAS and matched normal stroma using laser-capture microdissection (LCM) and LC-MS/MS in a cohort of 14 formalin-fixed paraffin embedded (FFPE) canine mCAs that we had previously characterized using LCM-RNAseq. Our results reveal clear differences in protein abundance between CAS and normal stroma, which are characterized by changes in the extracellular matrix, the cytoskeleton, and cytokines such as TNF. The proteomics- and RNAseq-based analyses of LCM-FFPE show a substantial degree of correlation, especially for the most deregulated targets and a comparable activation of pathways. Finally, we validate transcriptomic upregulation of LTBP2, IGFBP2, COL6A5, POSTN, FN1, COL4A1, COL12A1, PLOD2, COL4A2, and IGFBP7 in CAS on the protein level and demonstrate their adverse prognostic value for human breast cancer. Given the relevance of canine mCA as a model for the human disease, our analysis substantiates these targets as disease-promoting stromal components with implications for breast cancer in both species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.