The use of rifapentine plus isoniazid for 3 months was as effective as 9 months of isoniazid alone in preventing tuberculosis and had a higher treatment-completion rate. Long-term safety monitoring will be important. (Funded by the Centers for Disease Control and Prevention; PREVENT TB ClinicalTrials.gov number, NCT00023452.).
Rifampin has concentration-dependent activity against Mycobacterium tuberculosis. However, marked intersubject variation of rifampin concentrations occurs. In this study, we evaluated rifampin pharmacokinetics in relation to tuberculosis, geographic region, race, and single nucleotide polymorphisms of the human transporter genes SLCO1B1, SLCO1B3, and MDR1. Seventy-two adults with pulmonary tuberculosis from Africa, North America, and Spain were evaluated during multidrug intensive-phase therapy, and their results were compared to those from 16 healthy controls from North America. Rifampin pharmacokinetic values were similar between tuberculosis patients and controls (geometric mean [GM] area under the concentration-time curve from 0 to 24 h [AUC 0-24 ] of 40.2 versus 40.9 g ⅐ h/ml; P ؍ 0.9). However, in multivariable analyses, the rifampin AUC 0-24 was significantly affected by rifampin dosage (in mg/kg of body weight), polymorphisms in the SLCO1B1 gene, and the presence of tuberculosis by geographic region. The adjusted rifampin AUC 0-24 was lowest in patients with tuberculosis from Africa compared to that in non-African patients or control subjects. The adjusted rifampin AUC 0-24 was also 36% lower among participants with SLCO1B1 genotype c.463CA than that among participants with SLCO1B1 genotype c.463CC (adjusted GM, 29.8 versus 46.7 g ⅐ h/ml; P ؍ 0.001). Polymorphisms in the SLCO1B1 gene associated with lower rifampin exposure were more frequent among black subjects. In conclusion, marked intersubject variation of the rifampin AUC 0-24 values was observed, but the mean values of the AUC 0-24 did not significantly vary between patients with tuberculosis and healthy controls. Lower rifampin exposure was associated with the polymorphism of the SLCO1B1 c.463C>A gene. When adjusted for the patient mg/kg dosage and transporter gene polymorphisms, rifampin exposure was lower in patients with tuberculosis, which suggests that additional absorption or metabolic processes affect rifampin exposure with tuberculosis disease.
Rifapentine (RPT) is an antituberculosis drug that may shorten treatment duration when substituted for rifampin (RIF). The maximal tolerated daily dose of RPT and its potential for cytochrome 3A4 induction and autoinduction at clinically relevant doses are unknown. In this phase I, dose-escalation study among healthy volunteers, daily doses as high as a prespecified maximum of 20 mg/kg/day were well tolerated. Steady-state RPT concentrations increased with dose from 5 to 15 mg/kg, but area under the plasma concentration–time curve (AUC0–24) and maximum concentration (Cmax) were similar in the 15- and 20-mg/kg cohorts. Although RPT pharmacokinetics (PK) appeared to be time-dependent, accumulation occurred with daily dosing. The mean AUC0–12 of oral midazolam (MDZ), a cytochrome 3A (CYP3A) probe drug, was reduced by 93% with the coadministration of RPT and by 74% with the coadministration of RIF (P < 0.01). Changes in the oral clearance of MDZ did not vary by RPT dose. In conclusion, RPT was tolerated at doses as high as 20 mg/kg/day, its PK were less than dose-proportional, and its CYP3A induction was robust.
The Centers for Disease Control and Prevention and National Institutes of Health convened a multidisciplinary meeting to discuss surrogate markers of treatment response in tuberculosis. The goals were to assess recent surrogate marker research and to provide specific recommendations for (1) the qualification and validation of biomarkers of treatment outcome; (2) the standardization of specimen and data collection for future clinical trials, including a minimum set of samples and collection time points; and (3) the creation ofa specimen repository to support biomarker testing. This article summarizes these recommendations and provides a roadmap for their implementation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.