Here we present, for the first time, a glossary of biometeorological terms. The glossary aims to address the need for a reliable source of biometeorological definitions, thereby facilitating communication and mutual understanding in this rapidly expanding field. A total of 171 terms are defined, with reference to 234 citations. It is anticipated that the glossary will be revisited in coming years, updating terms and adding new terms, as appropriate. The glossary is intended to provide a useful resource to the biometeorology community, and to this end, readers are encouraged to contact the lead author to suggest additional terms for inclusion in later versions of the glossary as a result of new and emerging developments in the field.
Climatically-induced natural hazards are a threat to communities. They can cause life losses and heavy damage to infrastructure, and due to climate change, they have become increasingly frequent. This is especially the case in tropical regions, where major hurricanes have consistently appeared in recent history. Such events induce damage due to the high wind speed they carry, and the high intensity/duration of rainfall they discharge can further induce a chain of hydro-morphological hazards in the form of widespread debris slides/flows. The way the scientific community has developed preparatory steps to mitigate the potential damage of these hydro-morphological threats includes assessing where they are likely to manifest across a given landscape. This concept is referred to as susceptibility, and it is commonly achieved by implementing binary classifiers to estimate probabilities of landslide occurrences. However, predicting where landslides can occur may not be sufficient information, for it fails to convey how large landslides may be. This work proposes using a flexible Bernoulli-log-Gaussian hurdle model to simultaneously model landslide occurrence and size per areal unit. Covariate and spatial information are introduced using a generalised additive modelling framework. To cope with the high spatial resolution of the data, our model uses a Markovian representation of the Matérn covariance function based on the stochastic partial differential equation approach. Assuming Gaussian priors, our model can be integrated into the class of latent Gaussian models, for which inference is conveniently performed based on the integrated nested Laplace approximation method. We use our modelling approach in Dominica, where hurricane Maria (September 2017) induced thousands of shallow flow-like landslides passing over the island. Our results show that we can not only estimate where landslides may occur and how large they may be, but we can also combine this information in a unified landslide hazard model, which is the first of its kind.
Climatically-induced natural hazards are a threat to communities. They can cause life losses and heavy damage to infrastructure, and due to climate change, they have become increasingly frequent. This is especially in tropical regions, where major hurricanes have consistently appeared in recent history. Such events induce damage due to the high wind speed they carry, and the high intensity/duration rainfall they discharge can further induce a chain of hydro-morphological hazards in the form of widespread debris slides/flows. The way the scientific community has developed preparatory steps to mitigate the potential damage of these hydro-morphological threats includes assessing where they are likely to manifest across a given landscape. This concept is referred to as susceptibility, and it is commonly achieved by implementing binary classifiers to estimate probabilities of landslide occurrences. However, predicting where landslides can occur may not be sufficient information, for it fails to convey how large landslides may be. This work proposes using a flexible Bernoulli-log-Gaussian hurdle model to simultaneously model landslide occurrence and size per areal unit. Covariate and spatial information are introduced using a generalised additive modelling framework. To cope with the high spatial resolution of the data, our model uses a Markovian representation of the Matérn covariance function based on the stochastic partial differential equation (SPDE) approach. Assuming Gaussian priors, our model can be integrated into the class of latent Gaussian models, for which inference is conveniently performed based on the integrated nested Laplace approximation method. We use our modelling approach in Dominica, where Hurricane Maria (September 2017) induced thousands of shallow flow-like landslides passing over the island. Our results show that we can not only estimate where landslides may occur and how large they may be, but we can also combine this information in a unified landslide hazard model, which is the first of its kind.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.