Introduction Bacterial sepsis is a life-threatening disease and a significant clinical problem caused by host responses to a microbial infection. Sepsis is a leading cause of death worldwide and, importantly, a significant cause of morbidity and mortality in combat settings, placing a considerable burden on military personnel and military health budgets. The current method of treating sepsis is restricted to pathogen identification, which can be prolonged, and antibiotic administration, which is, initially, often suboptimal. The clinical trials that have been performed to evaluate bacterial separation as a sepsis therapy have been unsuccessful, and new approaches are needed to address this unmet clinical need. Materials and Methods An inertial-based, scalable spiral microfluidic device has been created to overcome these previous deficiencies through successful separation of infection-causing pathogens from the bloodstream, serving as a proof of principle for future adaptations. Fluorescent imaging of fluorescent microspheres mimicking the sizes of bacteria cells and blood cells as well as fluorescently stained Acinetobacter baumannii were used to visualize flow within the spiral. The particles were imaged when flowing at a constant volumetric rate of 0.2 mL min−1 through the device. The same device was functionalized with colistin and exposed to flowing A. baumannii at 0.2 mL h−1. Results Fluorescent imaging within the channel under a constant volumetric flow rate demonstrated that smaller, bacteria-sized microspheres accumulated along the inner wall of the channel, whereas larger blood cell–sized microspheres accumulated within the center of the channel. Additionally, fluorescently stained A. baumannii displayed accumulation along the channel walls in agreement with calculated performance. Nearly 106 colony-forming units of A. baumannii were extracted with 100% capture efficiency from flowing phosphate-buffered saline at 0.2 mL h−1 in this device; this is at least one order of magnitude more bacteria than present in the blood of a human at the onset of sepsis. Conclusions This type of bacterial separation device potentially provides an ideal approach for treating soldiers in combat settings. It eliminates the need for immediate pathogen identification and determination of antimicrobial susceptibility, making it suitable for rapid use within low-resource environments. The overall simplicity and durability of this design also supports its broad translational potential to improve military mortality rates and overall patient outcomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.