Prestimulus subsequent memory effects (preSMEs)-differences in neural activity elicited by a task cue at encoding that are predictive of later memory performance-are thought to reflect differential engagement of preparatory processes that benefit episodic memory encoding. We investigated age differences in preSMEs indexed by differences in ERP amplitude just before the onset of a study item. Young and older adults incidentally encoded words for a subsequent memory test. Each study word was preceded by a task cue that signaled a judgment to perform on the word. Words were presented for either a short (300 msec) or long (1000 msec) duration with the aim of placing differential benefits on engaging preparatory processes initiated by the task cue. ERPs associated with subsequent successful and unsuccessful recollection, operationalized here by source memory accuracy, were estimated time-locked to the onset of the task cue. In a late time window (1000-2000 msec after onset of the cue), young adults demonstrated frontally distributed preSMEs for both the short and long study durations, albeit with opposite polarities in the two conditions. This finding suggests that preSMEs in young adults are sensitive to perceived task demands. Although older adults showed no evidence of preSMEs in the same late time window, significant preSMEs were observed in an earlier time window (500-1000 msec) that was invariant with study duration. These results are broadly consistent with the proposal that older adults differ from their younger counterparts in how they engage preparatory processes during memory encoding.
Prestimulus subsequent memory effects (preSMEs) -differences in neural activity elicited by a task cue at encoding that are predictive of later memory performance -are thought to reflect differential engagement of preparatory processes that benefit episodic memory encoding. We investigated age differences in preSMEs indexed by differences in ERP amplitude just prior to the onset of a study item. Young and older adults incidentally encoded words for a subsequent memory test. Each study word was preceded by a task cue that signaled the judgment to perform on the word. Words were presented for either a short (300 ms) or a long (1000 ms) duration with the aim of placing differential benefits on engaging preparatory processes initiated by the task cue. ERPs associated with subsequent successful and unsuccessful recollection, operationalized here by source memory accuracy, were estimated time-locked to the onset of the task cue. In a late time-window (1000-2000 ms following onset of the cue), young adults demonstrated frontally distributed preSMEs for both the short and the long study durations, albeit with opposite polarities in the two conditions. This finding suggests that preSMEs in young adults are sensitive to perceived task demands. Although older adults showed no evidence of preSMEs in the same late time window, significant preSMEs were observed in an earlier time window (500-1000 ms) that were invariant with study duration. These results are broadly consistent with the proposal that older adults differ from their younger counterparts in how they engage preparatory processes during memory encoding.peer-reviewed)
In young adults, the neural correlates of successful recollection vary with the specificity (or amount) of information retrieved. We examined whether the neural correlates of recollection are modulated in a similar fashion in older adults. We compared event-related potential (ERP) correlates of recollection in samples of healthy young and older adults (N = 20 per age group). At study, participants were cued to make one of two judgments about each of a series of words. Subsequently, participants completed a memory test for studied and unstudied words in which they first made a Remember/Know/New (RKN) judgment, followed by a source memory judgment when a word attracted a 'Remember' (R) response. In young adults, the 'left parietal effect'-a putative ERP correlate of successful recollection-was largest for test items endorsed as recollected (R judgment) and attracting a correct source judgment, intermediate for items endorsed as recollected but attracting an incorrect or uncertain source judgment, and, relative to correct rejections, absent for items endorsed as familiar only (K judgment). In marked contrast, the left parietal effect was not detectable in older adults. Rather, regardless of source accuracy, studied items attracting an R response elicited a sustained, centrally maximum negative-going deflection relative to both correct rejections and studied items where recollection failed (K judgment). A similar retrieval-related negativity has been described previously in older adults, but the present findings are among the few to link this effect specifically to recollection. Finally, relative to correct rejections, all classes of correctly recognized old items elicited an ageinvariant, late-onsetting positive deflection that was maximal over the right frontal scalp. This finding, which replicates several prior results, suggests that post-retrieval monitoring operations were engaged to an equivalent extent in the two age groups. Together, the present results suggest that there are circumstances where young and older adults engage qualitatively distinct retrieval-related processes during successful recollection.
This empirically derived difficulty-level system created for storybooks read aloud to preschoolers represents a step toward filling a gap in the read-aloud literature.
In young adults, the neural correlates of successful recollection vary with the specificity (or amount) of information retrieved. We examined whether the neural correlates of recollection are modulated in a similar fashion in older adults. We compared event-related potential (ERP) correlates of recollection in samples of healthy young and older adults (N = 20 per age group). At study, participants were cued to make one of two judgments about each of a series of words. Subsequently, participants completed a memory test for studied and unstudied words in which they first made a Remember/Know/New (RKN) judgment, followed by a source memory judgment when a word attracted a ‘Remember’ (R) response. In young adults, the ‘left parietal effect’ – a putative ERP correlate of successful recollection – was largest for test items endorsed as recollected (R judgment) and attracting a correct source judgment, intermediate for items endorsed as recollected but attracting an incorrect or uncertain source judgment, and, relative to correct rejections, absent for items endorsed as familiar only (K judgment). In marked contrast, the left parietal effect was not detectable in older adults. Rather, regardless of source accuracy, studied items attracting an R response elicited a sustained, centrally maximum negative-going deflection relative to both correct rejections and studied items where recollection failed (K judgment). A similar retrieval-related negativity has been described previously in older adults, but the present findings are among the few to link this effect specifically to recollection. Finally, relative to correct rejections, all classes of correctly recognized old items elicited an age-invariant, late-onsetting positive deflection that was maximal over the right frontal scalp. This finding, which replicates several prior results, suggests that post-retrieval monitoring operations were engaged to an equivalent extent in the two age groups. Together, the present results suggest that there are circumstances where young and older adults engage qualitatively distinct retrieval-related processes during successful recollection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.