The critical period for weed control (CPWC) is a period in the crop growth cycle during which weeds must be controlled to prevent yield losses. Knowing the CPWC is useful in making decisions on the need for and timing of weed control and in achieving efficient herbicide use from both biological and economic perspectives. An increase in the use of herbicide-tolerant crops, especially soybean resistant to gly-phosate, has stimulated interest in the concept of CPWC. Recently, several studies examined this concept in glyphosate-resistant corn and soybean across the midwest-ern United States. However, these studies presented various methods for data analysis and reported CPWC on the basis of a variety of crop-or weed-related parameters. The objectives of this study are (1) to provide a review of the concept and studies of the CPWC, (2) to suggest a common method to standardize the process of data analysis, and (3) to invite additional discussions for further debate on the subject. Wide adoption of the suggested method of data analysis will allow easier comparison of the results among sites and between researchers. Nomenclature: Glyphosate; corn, Zea mays L.; soybean, Glycine max (L.) Merr.
The critical period for weed control (CPWC) is the period in the crop growth cycle during which weeds must be controlled to prevent unacceptable yield losses. Field studies were conducted in 1999 and 2000 in eastern Nebraska to evaluate the influence of nitrogen application on the CPWC in dryland corn in competition with a naturally occurring weed population. Nitrogen fertilizer was applied at rates equivalent to 0, 60, and 120 kg N ha Ϫ1. A quantitative series of treatments of both increasing duration of weed interference and length of weed-free period were imposed within each nitrogen main plot. The beginning and end of the CPWC based on an arbitrarily 5% acceptable yield loss level were determined by fitting the logistic and Gompertz equations to relative yield data representing increasing duration of weed interference and weed-free period, respectively. Despite an inconsistent response of corn grain yield to applied nitrogen, there was a noticeable influence on the CPWC. The addition of 120 kg N ha Ϫ1 delayed the beginning of the CPWC for all site-years when compared with the 0-kg N ha Ϫ1 rate and for three of the four site-years when compared with the 60-kg N ha Ϫ1 rate. The addition of 120 kg N ha Ϫ1 also hastened the end of the CPWC at three of the four site-years when compared with both reduced rates. The yield component most sensitive to both nitrogen and interference from weeds was seed number per ear. Practical implications of this study are that reductions in nitrogen use may create the need for more intensive weed management.
A field derived O. nubilalis strain exhibited high levels of resistance to Cry1Ab and survived on transgenic corn by feeding on tissues with low Cry1Ab expression. The Cry1Ab resistance was primarily autosomal, incompletely recessive and polygenic. Tissue and on-plant survival data indicated that dominance varies depending on plant stage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.