Summary1. Automated detection systems employing advanced technology (e.g. infrared imagery, auditory recording systems, pattern recognition software) are compelling tools for gathering animal abundance and distribution data since investigators can often collect data more efficiently and reduce animal disturbance relative to surveys using human observers. 2. Even with these improvements, analysing animal abundance with advanced technology can be challenging because of potential for incomplete detection, false positives and species misidentification. We argue that double sampling with an independent sampling method can provide the critical information needed to account for such errors.3. We present a hierarchical modelling framework for jointly analysing automated detection and double sampling data obtained during animal population surveys. Under our framework, observed counts in different sampling units are conceptualized as having arisen from a thinned log-Gaussian Cox process subject to spatial autocorrelation (where thinning accounts for incomplete detection). For multispecies surveys, our approach handles incomplete species observations owing to (i) structural uncertainties (e.g. in cases where the automatic detection data do not provide species observations) and (ii) species misclassification; the latter requires auxiliary information on the misclassification process. 4. As an example of combining an automated detection system and a double sampling procedure, we consider the problem of estimating animal abundance from aerial surveys that use infrared imagery to detect animals, and independent, high-resolution digital photography to provide information on species composition and thermal detection accuracy. We illustrate our approach by analysing simulated data and data from a survey of four iceassociated seal species in the eastern Bering Sea. 5. Our analysis indicated reasonable performance of our hierarchical modelling approach, but suggested a need to balance model complexity with the richness of the data set. For example, highly parameterized models can lead to spuriously high predictions of abundance in areas that are not sampled, especially when there are large gaps in spatial coverage. 6. We recommend that ecologists employ double sampling when enumerating animal populations with automated detection systems to estimate and correct for detection errors. Combining multiple data sets within a hierarchical modelling framework provides a powerful approach for analysing animal abundance over large spatial domains.
Ecologists often use transect surveys to estimate the density and abundance of animal populations. Errors in species classification are often evident in such surveys, yet few statistical methods exist to properly account for them. In this paper, we examine biases that result from species misidentification when ignored, and we develop statistical models to provide unbiased estimates of density in the face of such errors. Our approach treats true species identity as a latent variable and requires auxiliary information on the misclassification process (such as informative priors, experiments using known species, or a double-observer protocol). We illustrate our approach with simulated census data and with double-observer survey data for ice-associated seals in the Bering Sea. For the seal analysis, we integrated misclassification into a model-based framework for distance-sampling data. The simulated data analysis demonstrated reliable estimation of animal density when there are experimental data to inform misclassification rates; double-observer protocols provided robust inference when there were "unknown" species observations but no outright misclassification, or when misclassification probabilities were symmetric and a symmetry constraint was imposed during estimation. Under our modeling framework, we obtained reasonable apparent densities of seal species even under considerable imprecision in species identification. We obtained more reliable inferences when modeling variation in density among transects. We argue that ecologists should often use spatially explicit models to account for differences in species distributions when trying to account for species misidentification. Our results support using double-observer sampling protocols that guard against species misclassification (i.e., by recording uncertain observations as "unknown").
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.