Overcoming senescence signals in somatic cells is critical to cellular immortalization and carcinogenesis. High-risk human papillomavirus (HPV) can immortalize epithelial cells in culture through degradation of the retinoblastoma protein by HPV E7 and activation of hTERT transcription, the catalytic subunit of telomerase, by the heterodimer HPV E6/E6-associated protein (E6AP). Recent work in our laboratory identified a novel repressor of hTERT transcription, NFX1-91, which is targeted for ubiquitinmediated degradation by HPV type 16 (HPV16) E6/E6AP. In contrast, NFX1-123, a splice variant NFX1, increased expression from an hTERT promoter that was activated by HPV16 E6/E6AP. Here, we show that HPV16 E6 bound both NFX1-91 and NFX1-123 through the common central domain of NFX1 in the absence of E6AP. NFX1-123 positively regulated hTERT expression, as its knockdown decreased hTERT mRNA levels and telomerase activity and its overexpression increased telomerase activity. We identified new protein partners of NFX1-123, including several cytoplasmic poly(A) binding proteins (PABPCs) that interacted with NFX1-123 through its N-terminal PAM2 motif, a protein domain characteristic of other PABPC protein partners. Furthermore, NFX1-123 and PABPCs together had a synergistic stimulatory effect on hTERT-regulated reporter assays. The data suggest that NFX1-123 is integral to hTERT regulation in HPV16 E6-expressing epithelial cells and that the interaction between NFX1-123 and PABPCs is critical to hTERT activity.Normally, somatic cells undergo a finite series of population doublings before entering cellular senescence (24,25). A critical marker of a cell's age is the length of its telomeric DNA (1); with each cellular division, up to 200 nucleotides of DNA are lost at the ends of chromosomes (23,41). Cells that require infinite replicative potential, such as stem cells, protect their telomeric DNA from erosion by constitutively expressing telomerase, a ribonucleoprotein complex that extends telomeric DNA, and thus, these cells avoid senescence. Tumors also overcome cellular senescence in order to continue their growth (22), and many activate telomerase through up-regulation of hTERT, the catalytic subunit of telomerase (63). Thus, hTERT expression and telomerase activity are critical in cellular immortalization and carcinogenesis.Various proteins have been shown to be important regulators of hTERT. They include those that act as transcriptional repressors, including p53, p73, AP-1, and Menin (45, 59, 62, 67), as well as transcriptional activators, such as N-terminally truncated p73, c-Myc, and Sp1 (5,56,57,68,70,74). c-Myc and Sp1 have been shown to bind to the core hTERT promoter and increase hTERT mRNA levels (56,57,70,74), although Sp1 and Sp3 can also recruit histone deactylase to the hTERT promoter to repress expression (73). c-Myc and Sp1 have been found to affect hTERT, but their relative protein levels do not always correlate with the downstream hTERT mRNA and protein expression levels (17,57,69). Other important facto...
SummaryGeminiviruses are DNA viruses that replicate and transcribe their genes in plant nuclei. They are ideal vectors for understanding plant gene function because of their ability to cause systemic silencing in new growth and ease of inoculation. We previously demonstrated DNA episome-mediated gene silencing from a bipartite geminivirus in Nicotiana benthamiana. Using an improved vector, we now show that extensive silencing of endogenous genes can be obtained using less than 100 bp of homologous sequence. Concomitant symptom development varied depending upon the target gene and insert size, with larger inserts producing milder symptoms. In situ hybridization of silenced tissue in attenuated infections demonstrated that silencing occurs in cells that lack detectable levels of viral DNA. A mutation con®ning the virus to vascular tissue produced extensive silencing in mesophyll tissue, further demonstrating that endogenous gene silencing can be separated from viral infection. We also show that two essential genes encoding a subunit of magnesium chelatase and proliferating cell nuclear antigen (PCNA) can be silenced simultaneously from different components of the same viral vector. Immunolocalization of silenced tissue showed that the PCNA protein was down-regulated throughout meristematic tissues. Our results demonstrate that geminivirus-derived vectors can be used to study genes involved in meristem function in intact plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.