It has been hypothesized that the relatively rare autosomal dominant Alzheimer disease (ADAD) may be a useful model of the more frequent, sporadic, late-onset AD (LOAD). Individuals with ADAD have a predictable age at onset and the biomarker profile of ADAD participants in the preclinical stage may be used to predict disease progression and clinical onset. However, the extent to which the pathogenesis and neuropathology of ADAD overlaps with that of LOAD is equivocal. To address this uncertainty, two multicenter longitudinal observational studies, the Alzheimer Disease Neuroimaging Initiative (ADNI) and the Dominantly Inherited Alzheimer Network (DIAN), leveraged the expertise and resources of the existing Knight Alzheimer Disease Research Center (ADRC) at Washington University School of Medicine, St. Louis, Missouri, USA, to establish a Neuropathology Core (NPC). The ADNI/DIAN-NPC is systematically examining the brains of all participants who come to autopsy at the 59 ADNI sites in the USA and Canada and the 14 DIAN sites in the USA (8), Australia (3), UK (1), and Germany (2). By 2014, 41 ADNI and 24 DIAN autopsies (involving 9 participants and 15 family members) had been performed. The autopsy rate in the ADNI cohort in the most recent year was 93% (total since NPC inception: 70%). In summary, the ADNI/DIAN NPC has implemented a standard protocol for all sites to solicit permission for brain autopsy and to send brain tissue to the NPC for a standardized, uniform, and state-of-the-art neuropathologic assessment. The benefit to ADNI and DIAN of the implementation of the NPC is very clear. The NPC provides final ‘gold standard’ neuropathological diagnoses and data against which the antecedent observations and measurements of ADNI and DIAN can be compared.
Primary age-related tauopathy (PART) is a neurodegenerative entity defined as Alzheimer-type neurofibrillary degeneration primarily affecting the medial temporal lobe with minimal to absent amyloid-β (Aβ) plaque deposition. The extent to which PART can be differentiated pathoanatomically from Alzheimer disease (AD) is unclear. Here, we examined the regional distribution of tau pathology in a large cohort of postmortem brains (n = 914). We found an early vulnerability of the CA2 subregion of the hippocampus to neurofibrillary degeneration in PART, and semiquantitative assessment of neurofibrillary degeneration in CA2 was significantly greater than in CA1 in PART. In contrast, subjects harboring intermediate-to-high AD neuropathologic change (ADNC) displayed relative sparing of CA2 until later stages of their disease course. In addition, the CA2/CA1 ratio of neurofibrillary degeneration in PART was significantly higher than in subjects with intermediate-to-high ADNC burden. Furthermore, the distribution of tau pathology in PART diverges from the Braak NFT staging system and Braak stage does not correlate with cognitive function in PART as it does in individuals with intermediate-to-high ADNC. These findings highlight the need for a better understanding of the contribution of PART to cognitive impairment and how neurofibrillary degeneration interacts with Aβ pathology in AD and PART.
SignificanceAlzheimer’s disease (AD) is an age-related neurodegenerative disease. Genome-wide association studies predominately focusing on Caucasian populations have identified risk loci and genes associated with AD; the majority of these variants reside in noncoding regions with unclear functions. Here, we report a whole-genome sequencing study for AD in the Chinese population. Other than the APOE locus, we identified common variants in GCH1 and KCNJ15 that show suggestive associations with AD. For these two risk variants, an association with AD or advanced onset of disease can be observed in non-Asian AD cohorts. An association study of risk variants with expression data revealed their modulatory effects on immune signatures, linking the potential roles of these genes with immune-related pathways during AD pathogenesis.
Accurate diagnosis of mild cognitive impairment (MCI) before conversion to Alzheimer’s disease (AD) is invaluable for patient treatment. Many works showed that MCI and AD affect functional and structural connections between brain regions as well as the shape of cortical regions. However, ‘shape connections’ between brain regions are rarely investigated -e.g., how morphological attributes such as cortical thickness and sulcal depth of a specific brain region change in relation to morphological attributes in other regions. To fill this gap, we unprecedentedly design morphological brain multiplexes for late MCI/AD classification. Specifically, we use structural T1-w MRI to define morphological brain networks, each quantifying similarity in morphology between different cortical regions for a specific cortical attribute. Then, we define a brain multiplex where each intra-layer represents the morphological connectivity network of a specific cortical attribute, and each inter-layer encodes the similarity between two consecutive intra-layers. A significant performance gain is achieved when using the multiplex architecture in comparison to other conventional network analysis architectures. We also leverage this architecture to discover morphological connectional biomarkers fingerprinting the difference between late MCI and AD stages, which included the right entorhinal cortex and right caudal middle frontal gyrus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.