Veterinary pharmaceuticals are commonly used in poultry farming to prevent and treat microbial infections as well as to increase feed efficiency, but their use has created public and environmental health concerns. Poultry litter contains antimicrobial residues and resistant bacteria; when applied as fertilizer, the level and effects of these pharmaceuticals and antimicrobial-resistant bacteria in the environment are of concern. The purpose of this study was to investigate poultry litter for veterinary pharmaceuticals and resistance patterns of Escherichia coli. Litter samples were collected from controlled feeding trials and from commercial farms. Feed additives bacitracin, chlortetracycline, monensin, narasin, nicarbazin, penicillin, salinomycin, and virginiamycin, which were present in the feed on commercial farms and added to the feed in the controlled trials, were extracted in methanol and analyzed by liquid chromatography-mass spectrometry techniques. Sixty-nine E. coli were isolated and identified by API 20E. The susceptibility of the isolates to antibiotics was determined using Avian plates and the Sensititer automated system. This study confirmed the presence of antimicrobial residues in broiler litter from controlled environments as well as commercial farms, ranging from 0.07 to 66 mg/L depending on the compound. Concentrations of individual residues were higher in litter from controlled feeding trials than those from commercial farms. All E. coli isolates from commercial farms were multiresistant to at least 7 antibiotics. Resistance to beta-lactam antibiotics (amoxicillin, ceftiofur), tetracyclines, and sulfonamides was the most prevalent. This study concluded that broiler litter is a source of antimicrobial residues and represents a reservoir of multiple antibiotic-resistant E. coli.
Enterococcus spp. from two poultry farms and proximate surface and ground water sites in an area of intensive poultry production were tested for resistance to 16 clinical antibiotics. Resistance patterns were compared to assess trends and possible correlations for specific antimicrobials and levels of resistance. Enterococci were detected at all 12 surface water sites and three of 28 ground water sites. Resistance to lincomycin, tetracycline, penicillin and ciprofloxacin in poultry litter isolates was high (80.3%, 65.3%, 61.1% and 49.6%, respectively). Resistance in the surface water to the same antibiotics was 87.1%, 24.1%, 7.6% and 12.9%, respectively. Overall, 86% of litter isolates, 58% of surface water isolates and 100% of ground water isolates were resistant to more than one antibiotic. Fifty-four different resistance patterns were recognised in isolates obtained from litter and environmental samples and several E. faecium and E. faecalis isolates from litter and environment samples shared the same resistance pattern. Multiple antibiotic resistant (MAR) indices calculated to assess health risks due to the presence of resistant enterococci suggested an increased presence of antibiotics in surface water, likely from poultry sources as no other wastewater contributions in the area were documented.
Genetic relatedness of enterococci from poultry litter to enterococci from nearby surface water and groundwater in the Lower Fraser Valley regions of British Columbia, Canada was determined. A new automated BOX-PCR and Pulsed-Field Gel Electrophoresis (PFGE) were used to subtype enterococcal isolates from broiler and layer litter and surface and groundwater. All surface water samples (n = 12) were positive for enterococci, as were 11% (3/28) of groundwater samples. Enterococcus faecium (n = 90) was isolated from all sources, while Enterococcus faecalis (n = 59) was isolated from all sources except layer litter. The majority of E. faecalis originated from broiler litter (28/59; 47.5%) while the majority of E. faecium were isolated from layer litter (29/90; 32.2%). E. faecalis grouped primarily by source using BOX-PCR. Isolates from water samples were dispersed more frequently among PFGE groups containing isolates from poultry litter. E. faecium strains were genetically diverse as overall clustering was independent of source by both molecular methods. Subgroups of E. faecium isolates based upon source (layer litter) were present in BOX-PCR groups. Three individual E. faecalis groups and two individual E. faecium groups were 100% similar using BOX-PCR; only one instance of 100% similarity among isolates using PFGE was observed. Although enterococci from litter and water sources were grouped together using BOX-PCR and PFGE, isolates originating from water could not be definitively identified as originating from poultry litter. Automation of BOX-PCR amplicon separation and visualization increased the reproducibility and standardization of subtyping using this procedure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.