The House Observations of Microbial and Environmental Chemistry (HOMEChem) study was a large-scale collaborative experimental investigation probing indoor air composition and chemistry.
We report elevated levels of gaseous inorganic chlorinated and nitrogenated compounds in indoor air while cleaning with a commercial bleach solution during the House Observations of Microbial and Environmental Chemistry field campaign in summer 2018. Hypochlorous acid (HOCl), chlorine (Cl2), and nitryl chloride (ClNO2) reached part-per-billion by volume levels indoors during bleach cleaningseveral orders of magnitude higher than typically measured in the outdoor atmosphere. Kinetic modeling revealed that multiphase chemistry plays a central role in controlling indoor chlorine and reactive nitrogen chemistry during these periods. Cl2 production occurred via heterogeneous reactions of HOCl on indoor surfaces. ClNO2 and chloramine (NH2Cl, NHCl2, NCl3) production occurred in the applied bleach via aqueous reactions involving nitrite (NO2 –) and ammonia (NH3), respectively. Aqueous-phase and surface chemistry resulted in elevated levels of gas-phase nitrogen dioxide (NO2). We predict hydroxyl (OH) and chlorine (Cl) radical production during these periods (106 and 107 molecules cm–3 s–1, respectively) driven by HOCl and Cl2 photolysis. Ventilation and photolysis accounted for <50% and <0.1% total loss of bleach-related compounds from indoor air, respectively; we conclude that uptake to indoor surfaces is an important additional loss process. Indoor HOCl and nitrogen trichloride (NCl3) mixing ratios during bleach cleaning reported herein are likely detrimental to human health.
It is important to improve our understanding of exposure to particulate matter (PM) in residences because of associated health risks. The HOMEChem campaign was conducted to investigate indoor chemistry in a manufactured test house during prescribed everyday activities, such as cooking, cleaning, and opening doors and windows. This paper focuses on measured size distributions of PM (0.001–20 μm), along with estimated exposures and respiratory-tract deposition. Number concentrations were highest for sub-10 nm particles during cooking using a propane-fueled stovetop. During some cooking activities, calculated PM2.5 mass concentrations (assuming a density of 1 g cm–3) exceeded 250 μg m–3, and exposure during the postcooking decay phase exceeded that of the cooking period itself. The modeled PM respiratory deposition for an adult residing in the test house kitchen for 12 h varied from 7 μg on a day with no indoor activities to 68 μg during a simulated day (including breakfast, lunch, and dinner preparation interspersed by cleaning activities) and rose to 149 μg during a simulated Thanksgiving day.
Aerosols are liquid or solid particles suspended in the atmosphere, typically with diameters on the order of nanometers to microns. These particles impact air quality and the radiative balance of the planet. Dry deposition is a key process for the removal of aerosols from the atmosphere and plays an important role in controlling the lifetime of atmospheric aerosols. Dry deposition is driven by turbulence and shows a strong dependence on particle size. This review summarizes the mechanisms behind aerosol dry deposition, including measurement approaches, field observations, and modeling studies. We identify several gaps in the literature, including deposition over the cryosphere (i.e., snow and ice surfaces) and the ocean; in addition, we highlight new techniques to measure black carbon fluxes. While recent advances in aerosol instrumentation have enhanced our understanding of aerosol sources and chemistry, dry deposition and other loss processes remain poorly investigated. Expected final online publication date for the Annual Review of Physical Chemistry, Volume 72 is April 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
The Aerodyne aerosol mass spectrometer (AMS) is used extensively to study the composition of non-refractory submicron aerosol composition during atmospheric field studies. During two recent studies of indoor environments, HOMEChem and ATHLETIC, the default ambient organic aerosol AMS quantification parameters resulted in a large discrepancy with co-located instruments while sampling cooking organic aerosol (COA). Instruments agreed within uncertainty estimates during all other sampling periods. Assuming a collection efficiency (CE) of unity, adjustments to the AMS relative ionization efficiency (RIE) were required to reach agreement with co-located instruments. The range of RIE COA observed (ATHLETIC: RIE COA =4.26-4.96, HOMEChem: RIE COA =4.70-6.50) was consistent with RIE measured in the laboratory for cooking-specific molecules. These results agree with prior AMS studies which have indicated that more oxidized outdoor ambient organic aerosol has a relatively constant RIE of 1.4 ± 0.3 while more reduced organics have higher RIE. The applicability of a higher RIE was considered for two ambient datasets, and agreement between the AMS and co-located instruments improved when an increased response factor (RIE CE) was applied to positive matrix factorization-derived primary organic aerosol (POA). Based on the observations presented here and the literature, we recommend AMS users consider applying RIE COA =4.2 to source and indoor studies of COA and evaluate a higher POA response factor of the order of ~1.5 in outdoor studies at urban background sites, and ~2 at sites impacted by fresh sources. This study aims to improve AMS quantification methodology for reduced POA and highlights the importance of careful intercomparisons in field studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.