The lateral cortex of the inferior colliculus (LCIC) is a multimodal subdivision of the midbrain inferior colliculus (IC) that plays a key role in sensory integration. The LCIC is compartmentally-organized, exhibiting a series of discontinuous patches or modules surrounded by an extramodular matrix. In adult mice, somatosensory afferents target LCIC modular zones, while auditory afferents terminate throughout the encompassing matrix. Recently, we defined an early LCIC critical period (birth: postnatal day 0 to P12) based upon the concurrent emergence of its neurochemical compartments (modules: glutamic acid decarboxylase, GAD+; matrix: calretinin, CR+), matching Eph-ephrin guidance patterns, and specificity of auditory inputs for its matrix. Currently lacking are analogous experiments that address somatosensory afferent shaping and the construction of discrete LCIC multisensory maps. Combining living slice tract-tracing and immunocytochemical approaches in a developmental series of GAD67-GFP knock-in mice, the present study characterizes: (1) the targeting of somatosensory terminals for emerging LCIC modular fields; and (2) the relative separation of somatosensory and auditory inputs over the course of its established critical period. Results indicate a similar time course and progression of LCIC projection shaping for both somatosensory (corticocollicular) and auditory (intracollicular) inputs. While somewhat sparse and intermingling at birth, modality-specific projection patterns soon emerge (P4–P8), coincident with peak guidance expression and the appearance of LCIC compartments. By P12, an adult-like arrangement is in place, with fully segregated multimodal afferent arrays. Quantitative measures confirm increasingly distinct input maps, exhibiting less projection overlap with age. Potential mechanisms whereby multisensory LCIC afferent systems recognize and interface with its emerging modular-matrix framework are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.