Precise control of jaw length during development is crucial for proper form and function. Previously we have shown that in birds, neural crest mesenchyme (NCM) confers species-specific size and shape to the beak by regulating molecular and histological programs for the induction and deposition of cartilage and bone. Here we reveal that a hitherto unrecognized but similarly essential mechanism for establishing jaw length is the ability of NCM to mediate bone resorption. Osteoclasts are considered the predominant cells that resorb bone, although osteocytes have also been shown to participate in this process. In adults, bone resorption is tightly coupled to bone deposition as a means to maintain skeletal homeostasis. Yet, the role and regulation of bone resorption during growth of the embryonic skeleton have remained relatively unexplored. We compare jaw development in short-beaked quail versus long-billed duck and find that quail have substantially higher levels of enzymes expressed by bone-resorbing cells including tartrate-resistant acid phosphatase (TRAP), Matrix metalloproteinase 13 (Mmp13), and Mmp9. Then, we transplant NCM destined to form the jaw skeleton from quail to duck and generate chimeras in which osteocytes arise from quail donor NCM and osteoclasts come exclusively from the duck host. Chimeras develop quail-like jaw skeletons coincident with dramatically elevated expression of TRAP, Mmp13, and Mmp9. To test for a link between bone resorption and jaw length, we block resorption using a bisphosphonate, osteoprotegerin protein, or an MMP13 inhibitor, and this significantly lengthens the jaw. Conversely, activating resorption with RANKL protein shortens the jaw. Finally, we find that higher resorption in quail presages their relatively lower adult jaw bone mineral density (BMD) and that BMD is also NCM-mediated. Thus, our experiments suggest that NCM not only controls bone resorption by its own derivatives but also modulates the activity of mesoderm-derived osteoclasts, and in so doing enlists bone resorption as a key patterning mechanism underlying the functional morphology and evolution of the jaw.
Neural crest mesenchyme (NCM) controls species-specific pattern in the craniofacial skeleton but how this cell population accomplishes such a complex task remains unclear. To elucidate mechanisms through which NCM directs skeletal development and evolution, we made chimeras from quail and duck embryos, which differ markedly in their craniofacial morphology and maturation rates. We show that quail NCM, when transplanted into duck, maintains its faster timetable for development and autonomously executes molecular and cellular programs for the induction, differentiation, and mineralization of bone, including premature expression of osteogenic genes such as Runx2 and Col1a1. In contrast, the duck host systemic environment appears to be relatively permissive and supports osteogenesis independently by providing circulating minerals and a vascular network. Further experiments reveal that NCM establishes the timing of osteogenesis by regulating cell cycle progression in a stage- and species-specific manner. Altering the time-course of D-type cyclin expression mimics chimeras by accelerating expression of Runx2 and Col1a1. We also discover higher endogenous expression of Runx2 in quail coincident with their smaller craniofacial skeletons, and by prematurely over-expressing Runx2 in chick embryos we reduce the overall size of the craniofacial skeleton. Thus, our work suggests that NCM establishes species-specific size in the craniofacial skeleton by controlling cell cycle, Runx2 expression, and the timing of key events during osteogenesis.
Changes in the oral cavity observed in patients with HPT suggested both decreased cortical density and increased likelihood of oral tori. The contemporary oral manifestations of primary HPT are different from those previously reported, and health care providers should be aware of newer, more subtle findings that may be present when treating patients with HPT.
SUMMARYMany tissue-engineering approaches for repair and regeneration involve transplants between species. Yet a challenge is distinguishing donor versus host effects on gene expression. This study provides a simple molecular strategy to quantify species-specific contributions in chimeras and xenografts. Species-specific primers for reverse transcription quantitative real-time PCR (RT-qPCR) were designed by identifying silent mutations in quail, duck, chicken, mouse and human ribosomal protein L19 (RPL19). cDNA from different pairs of species was mixed in a dilution series and species-specific RPL19 primers were used to generate standard curves. Then quail cells were transplanted into transgenic-GFP chick and resulting chimeras were analyzed with species-specific primers. Fluorescence-activated cell sorting (FACS) confirmed that donor-and host-specific levels of RPL19 expression represent actual proportions of cells. To apply the RPL19 strategy, we measured Runx2 expression in quail-duck chimeras. Elevated Runx2 levels correlated with higher percentages of donor cells. Finally, RPL19 primers also discriminated mouse from human and chick. Thus, this strategy enables chimeras and/or xenografts to be screened rapidly at the molecular level.
The role of AP-1 family members in the action of PTHrP was examined in cementoblasts. PTHrP increased mRNA and protein levels of all Fos members, but only one Jun member (JunB) was increased. Overexpression of JunB in cementoblasts mimicked actions of PTHrP to support osteoclastogenesis and inhibit cementoblast differentiation, suggesting that the actions of PTHrP on mesenchymal cells operate through JunB.Introduction: Cementoblasts are mesenchymal cells that share phenotypic features with osteoblasts in vitro; however, unlike osteoblasts, cementoblasts rarely support osteoclastogenesis in vivo. The osteoblast-mediated support of osteoclastogenesis involves PTH-induced reduction in osteoprotegerin (OPG) expression. PTH acts on osteoblastic cells through specific signaling pathways and transcription factors such as activator protein 1 (AP-1). The purpose of this study was to determine the impact of PTH-related protein (PTHrP) on AP-1 transcription factors in cementoblasts and the role of JunB in the actions of PTHrP. Materials and Methods: Cementoblastic cells were treated with PTHrP and evaluated for mRNA and protein levels of AP-1 family members. Stable transfectants of OCCM cells overexpressing JunB were evaluated for OPG production, ability to support osteoclastogenesis, and measures of proliferation and differentiation. Results: PTHrP treatment in vitro resulted in a time-dependent upregulation of mRNA and proteins for the Fos family members, but only JunB of the Jun family. OPG mRNA and protein levels were reduced by PTHrP in OCCM and were lower in JunB overexpressing cells than controls. In co-culture experiments, TRACP
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.