Previous research has shown that prenatal exposure to pesticides may be associated with decreased fetal growth. The specific pesticides investigated and results reported across studies have been inconsistent, and there is a mounting need for the consideration of mixtures rather than individual agents in studies of health outcomes in relation to environmental exposures. There are also many individual pesticides that have not been investigated in human health studies to date. We conducted a pilot study in rural Zhejiang province, China, measuring 20 non-persistent pesticides (10 insecticides, 6 herbicides, 3 fungicides, and 1 repellant) in umbilical cord blood of 112 full term (>37 weeks) infants. The pesticides detected with the greatest frequency were diethyltoluamide (DEET) (73%), a repellant, and vinclozolin (49%), a fungicide. The samples had detectable concentrations for a mean of 4.6 pesticides (SD=1.9) with a maximum of 10. Adjusting for potential confounders, newborn birth weight was inversely associated with the number of pesticides detected in cord blood (p = 0.04); birth weight decreased by a mean of 37.1 grams (95% CI, −72.5 to −1.8) for each detected pesticide. When assessing relationships by pesticide type, detection of fungicides was also associated with decreased birth weight (adjusted β = −116 grams [95% CI, −212 to −19.2]). For individual pesticides analyzed as dichotomous (detect vs. non-detect) variables, only vinclozolin (adjusted β = −174 grams [95% CI, −312 to −36.3] and acetochlor (adjusted β = −165 grams [95% CI, −325 to −5.7]) were significantly associated with reduced birth weight. No significant associations were seen between birth weight and individual pesticides assessed as continuous or 3-level ordinal variables. Our findings from this pilot investigation suggest that exposure to fungicides may adversely impact fetal growth. Exposure to mixtures of multiple pesticides is also of concern and should be explored in addition to individual pesticides. Additional research is needed to establish causality and to understand the function and impact of fungicides and pesticide mixtures on fetal development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.