Investigations into the use of the ionic liquid 1-butyl-3-methylimidazolium chloride [BMIM]+[Cl]−to extend the mapping of the wool proteome have established that it is complementary to the use of commonly used chaotropic agents such as urea.
The disulfide bond network within the cortex of mammalian hair has a critical influence on the physical and mechanical characteristics of the fiber. The location, pattern, and accessibility of free and crosslinked cysteines underpin the properties of this network, but have been very difficult to map and understand, because traditional protein extraction techniques require the disruption of these disulfide bonds. Cysteine accessibility in both trichocyte keratins and keratin associated proteins (KAPs) of wool was investigated using staged labeling, where reductants and chaotropic agents were used to expose cysteines in a stepwise fashion according to their accessibility. Cysteines thus exposed were labeled with distinguishable alkylation agents. Proteomic profiling was used to map peptide modifications and thereby explore the role of KAPs in crosslinking keratins. Labeled cysteines from KAPs were detected when wool was extracted with reductant only. Among them were sequences from the end domains of KAPs, indicating that those cysteines were easily accessible in the fiber and could be involved in forming interdisulfide linkages with keratins or with other KAPs. Some of the identified peptides were from the rod domains of Types I and II keratins, with their cysteines positioned on the exposed surface of the α-helix. Peptides were also identified from keratin head and tail domains, demonstrating that they are not buried within the filament structure and, hence, have a possible role in forming disulfide linkages. From this study, a deeper understanding of the accessibility and potential reactivity of cysteine residues in the wool fiber cortex was obtained.
Evaluating the interconnecting effects of pH, temperature and time on food proteins is of relevance to food processing, and food functionality. Here we describe a matrix-based approach in which meat proteins were exposed to combinations of these parameters, selected to cover coordinates in a realistic processing space, and analyzed using redox proteomics. Regions within the matrix showing high levels of protein modification were evaluated for oxidative and other modifications. Both pH and temperature, independently, had a significant effect on the oxidative modifications mostly detected in myofibrillar proteins such as myosin and troponin and also collagen. Heat induced pyroglutamic acid formation was exclusively observed in the myofibrillar proteins. Potential interdependencies between pH, temperature and exposure time were evaluated using a 3-way analysis of variance (ANOVA) on protein modification levels to better understand how industry relevant process parameters influence protein quality and function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.