A flashing ratchet transports diffusive particles using a time-dependent, asymmetric potential. The particle speed is predicted to increase when a feedback algorithm based on the particle position is used. We have experimentally realized such a feedback ratchet using an optical line trap, and observed that use of feedback increases velocity by up to an order of magnitude. We compare two different feedback algorithms for small particle numbers, and find good agreement with simulations. We also find that existing algorithms can be improved to be more tolerant to feedback delay times.
Summary Axonal microtubules are predominantly organized into a plus-end-out pattern.Here, we examined the polarity-sorting mechanism underlying this organization both experimentally and using modeling. The posited mechanism centers on cytoplasmic dynein transporting plus-end-out and minus-end-out microtubules into and out of the axon, respectively. When cytoplasmic dynein was acutely inhibited, the bi-directional transport of microtubules in the axon was disrupted in both directions, after which minus-end-out microtubules accumulated in the axon over time. Computational modeling revealed that dynein-mediated transport of microtubules can establish and preserve a predominantly plus-end-out microtubule pattern as per the details of the experimental findings, but only if a kinesin motor and a static cross-linker protein are also at play. Consistent with the predictions of the model, partial depletion of TRIM46, a protein that cross-links axonal microtubules in a manner that influences their polarity orientation, leads to an increase in microtubule transport.
In honour of Max Planck (1858Planck ( -1947 on the occasion of his 150th birthday.A flashing ratchet uses a time-dependent, spatially periodic, asymmetric potential to rectify thermal motion of Brownian particles. Here we review approaches to improve the particle flux in this type of Brownian motor by feedback strategies that switch the potential based on the instantaneous particle distribution. We review strategies that are based on the force experienced by the particles, and introduce a new feedback strategy that is based on the expected displacement that can be achieved. Langevin dynamics simulations show that this maximum net displacement strategy performs better than force-based strategies in the limit of very small particle numbers and not too high temperatures. We also review the effects of time delay and noisy channels on feedback control, and perform a feasibility analysis of an experimental system that can realize feedback control using a computer-controlled, scanning-line optical trap and suspended microspheres.
It was recently shown that the use of feedback control can improve the performance of a flashing ratchet. We investigate the effect of a time delay in the implementation of feedback control in a closed-loop collective flashing ratchet, using Langevin dynamics simulations. Surprisingly, for a large ensemble, a well-chosen delay time improves the ratchet performance by allowing the system to synchronize into a quasi-periodic stable mode of oscillation that reproduces the optimal average velocity for a periodically flashing ratchet. For a small ensemble, on the other hand, finite delay times significantly reduce the benefit of feedback control for the time-averaged velocity, because the relevance of information decays on a time scale set by the diffusion time of the particles. Based on these results, we establish that experimental use of feedback control is realistic.
A growth cone is a motile structure at the tips of axons that is driven by the actin network and guides axon extension. Low actin adhesion to the substrate creates a stationary actin treadmill that allows leading-edge protrusion when adhesion increases in response to guidance cues. We use experimental measurements in the Aplysia bag growth cone to develop and constrain a simple mechanical model of the actin treadmill. We show that actin retrograde flow is primarily generated by myosin contractile forces, but when myosin is inhibited, leading-edge membrane tension increases and drives the flow. By comparing predictions of the model with previous experimental measurements, we demonstrate that lamellipodial and filopodial filament breaking contribute equally to the resistance to the flow. The fully constrained model clarifies the role of actin turnover in the mechanical balance driving the actin treadmill and reproduces the recent experimental observation that inhibition of actin depolymerization causes retrograde flow to slow exponentially with time. We estimate forces in the actin treadmill, and we demonstrate that measured G-actin distributions are consistent with the existence of a forward-directed fluid flow that transports G-actin to the leading edge.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright 漏 2024 scite LLC. All rights reserved.
Made with 馃挋 for researchers
Part of the Research Solutions Family.