The COVID-19 infectious disease pandemic has caused significant fear and uncertainty around the world and had significant adverse psychological impact. Children, adolescents and adults with autism spectrum disorder (ASD) are a particularly vulnerable population, impacted by stay-at-home orders, closures at nonessential services, and social distancing standards. This commentary describes various challenges faced by individuals with ASD in the United States including disruptions caused by educational and vocational changes, challenges to home and leisure routines, limited access to behavioral health services and changes in health services delivery due to the pandemic. We highlight the need for ongoing skills development for individuals and development within systems to better respond to needs of the ASD population in future emergencies.
The primary taste cortex has widespread and occasionally dense projections to the orbitofrontal cortex (OFC) in the macaque. Nonetheless, electrophysiological studies have revealed that only 2-8% of the cells in the OFC are activated by taste stimuli on the tongue. We describe an area centered in Brodmann's area 13m of the medial OFC (mOFC) where taste neurons are more concentrated. It consists of a 12 mm 2 core, where gustatory neurons constituted 20% of the population, and a 1 mm perimeter in which 8% of the cells responded to taste. Data were collected from three awake cynomolgus monkeys (Macaca fascicularis) prepared for chronic recording. Single neurons were isolated with epoxylite-coated tungsten microelectrodes and tested for responsiveness to 1.0 M glucose, 0.3 M NaCl, 0.03 M HCl, and 0.001 M QHCl. These stimuli elicited responses that were 96% excitatory and ranged from 5.2 to 5.9 spikes/s. Cells were broadly tuned (H ϭ 0.79), similar to those in the anterior insula (H ϭ 0.70), and decidedly unlike the narrowly tuned taste neurons in the caudolateral OFC (clOFC; H ϭ 0.39). Whereas 82% of the taste cells in the clOFC respond to glucose, in the mOFC, HCl-responsive (56%), glucose-responsive (50%), NaCl-responsive (43%), and QHCl-responsive (40%) cells were almost evenly represented. The mOFC taste area appears to comprise a major gustatory relay that lies anatomically and functionally between the anterior insula and the clOFC.
Feeding-related gustatory, olfactory, and visual activation of the orbitofrontal cortex (OFC) decreases following satiety. Previous neurophysiological studies have concentrated on the caudolateral OFC (clOFC). We describe satiety-induced modulation of 23 gustatory, 5 water, and 15 control neurons in the medial OFC (mOFC), where gustatory neurons represent a much larger percentage of the population. For 15 of the 23 gustatory neurons (65%), every significant taste response evoked during pre-satiety testing decreased following satiety (X=70%). Responses evoked by the ineffective taste stimuli during pre-satiety testing were unchanged following satiety. The graded response decrements of the mOFC gustatory neurons stand in marked contrast to the clOFC responses, which are almost completely suppressed by satiety. Two other novel findings are reported here. First, all significant pre-satiety taste responses of four gustatory neurons increased following satiety (X=51%). Second, post-satiety emergent taste responses were observed in 7 of 15 neurons (47%) classified as non-responsive during pre-satiety testing. The presence of increased responsiveness and emergent gustatory neurons in the mOFC suggests that meal termination may require active processes as well as the passive loss of hedonic value.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.