Background: Pendred syndrome, a common autosomal-recessive disorder characterized by congenital deafness and goiter, is caused by mutations of SLC26A4, which codes for pendrin. We investigated the relationship between pendrin and deafness using mice that have (Slc26a4 +/+ ) or lack a complete Slc26a4 gene (Slc26a4 -/-).
In sea urchin embryos, blastula formation occurs between the seventh and tenth cleavage and is associated with changes in the permeability properties of the epithelium although the structures responsible for mediating these changes are not known. Tight junctions regulate the barrier to paracellular permeability in chordate epithelia; however, the sea urchin blastula epithelium lacks tight junctions and instead possesses septate junctions. Septate junctions are unique to non-chordate invertebrate cell layers and have a characteristic ladder-like appearance whereby adjacent cells are connected by septa. To determine the function of septate junctions in sea urchin embryos, the permeability characteristics of the embryonic sea urchin epithelia were assessed. First, the developmental stage at which a barrier to paracellular permeability arises was examined and found to be in place after the eighth cleavage division. The mature blastula epithelium is impermeable to macromolecules; however, brief depletion of divalent cations renders the epithelium permeable. The ability of the blastula epithelium to recover from depletion of divalent cations and re-establish a barrier to paracellular permeability using fluorescently labelled lectins was also examined. Finally, septate junction structure was examined in embryos in which the permeability status of the epithelium was known. The results provide evidence that septate junctions mediate the barrier to paracellular permeability in sea urchin embryos.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.