Formation of ascospores in the yeast Saccharomyces cerevisiae is driven by an unusual cell division in which daughter nuclei are encapsulated within de novo-formed plasma membranes, termed prospore membranes. Generation of viable spores requires that cytoplasmic organelles also be captured along with nuclei. In mitotic cells segregation of mitochondria into the bud requires a polarized actin cytoskeleton. In contrast, genes involved in actin-mediated transport are not essential for sporulation. Instead, efficient segregation of mitochondria into spores requires Ady3p, a component of a protein coat found at the leading edge of the prospore membrane. Other organelles whose mitotic segregation is promoted by actin, such as the vacuole and the cortical endoplasmic reticulum, are not actively segregated during sporulation but are regenerated within spores. These results reveal that organellar segregation into spores is achieved by mechanisms distinct from those in mitotic cells.
The meiosis II outer plaque (MOP) acts a vesicle tethering complex that is a site for de novo membrane formation. Novel mutants in a MOP protein reveal that interaction of vesicles with the MOP surface is required to recruit a second tethering complex, the exocyst, to the vesicles, suggesting a mechanism by which the MOP promotes vesicle fusion.
SummarySpore formation in Saccharomyces cerevisiae is driven by de novo assembly of new membranes termed prospore membranes. A vesicle-docking complex called the meiosis II outer plaque (MOP) forms on the cytoplasmic faces of the spindle-pole bodies at the onset of meiosis II and serves as the initiation site for membrane formation. In this study, a fluorescence-recovery assay was used to demonstrate that the dynamics of the MOP proteins change coincident with the coalescence of precursor vesicles into a membrane. Proteins within the MOP exchange freely with a soluble pool prior to membrane assembly, but after membranes are formed they remain stably within the MOP. By contrast, constitutive spindle-pole-body proteins display low exchange in both conditions. The MOP component Ady4p plays a role in maintaining the integrity of the MOP complex, but this role differs depending on whether the MOP is associated with docked vesicles or a fully formed membrane. These results suggest an architectural rearrangement of the MOP coincident with vesicle fusion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.