Background: Advanced glycation end products (AGEs) are implicated in the etiology of diabetic complications in the kidney, nerve and eye. Skeletal muscle contractile parameters have also been found to be altered in diabetes. Glycation has not been extensively studied in skeletal muscle, but AGE-modified proteins may influence contractility. Objective and Methods: The aim of this study was to use immunohistochemistry to identify distribution patterns of the AGE NΕ-(carboxymethyl)-lysine in plantaris muscle of diabetic rats. Results: Results revealed the presence of NΕ-(carboxymethyl)-lysine intracellularly and also at sites along the myofiber periphery. The number of myofibers immunolabeling for AGE in animals with diabetes was more than 4-fold greater than in control animals. Additionally, there was a greater proportion of slow + fast myosin heavy chain coexpression in the AGE-positive cells from diabetic animals than in AGE-positive fibers from control animals. No significant difference was present between cross-sectional areas of AGE-positive fibers and AGE-negative fibers within the respective experimental groups. Conclusions: AGE accumulation is greater in skeletal muscle in vivo from diabetic animals than in control animals. This AGE accumulation appears to be associated with fiber-type transformation rather than with myofiber size. Further study is needed to determine the identity of these AGE-modified proteins and to determine how they influence skeletal muscle function in diabetes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.