Functional near-infrared sensing (fNIR) enables real-time, noninvasive monitoring of cognitive activity by measuring the brain's hemodynamic and metabolic responses. We have demonstrated the ability for non-vocal and non-physical communications through detecting directed changes in cognitive tasks. Building upon past research, this paper reports methods that allow the calibration of the fNIR oxygenation signal to better be used in more complex communicative and selection tasks. This work is then discussed in the context of a faster, continuous fNIR brain-computer interface framework.
Controlling computers and other electronic devices using only one's thoughts is an exciting yet unlikely and distant reality for most people. However, for people with locked-in syndrome, their disabilities are so severe that they have no other alternatives. Applications that are consciously controlled using signals from the brain (called brain-computer interfaces, or BCIs) have been shown to restore some communication and environmental control for these individuals. Unfortunately, BCIs can be slow and tedious to learn or operate, reducing their effectiveness. This demonstration presents engaging BCI applications, including a video game and a digital painting program, that enable users to have fun while they improve their control over the brain signals required to use BCIs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.