Background: Oral dysbiosis is an imbalance in the oral microbiome and is associated with a variety of oral and systemic diseases, including periodontal disease, caries, and head and neck/oral cancer. Although antibiotics can be used to control this dysbiosis, they can lead to adverse side effects and superinfections. Thus, novel strategies have been proposed to address these shortcomings. One strategy is the use of probiotics as antimicrobial agents, since they are considered safe for humans and the environment. Specifically, the Grampositive Lactococcus lactis, a species present in the oral and gut microbiota, is able to produce nisin, which has been used worldwide for food preservation. Objective: The objective of this study was to test whether a nisin probiotic can promote a healthier oral microbiome in pathogen-spiked oral biofilms. Results: We found that L. lactis can prevent oral biofilm formation and disrupt 24-h and 48h pre-formed biofilms. Finally, we demonstrate that both treatments, a nisin-producing L. lactis probiotic and nisin can decrease the levels of pathogens in the biofilms and return the diversity levels back to control or 'healthy' levels. Conclusion: A nisin-producing probiotic, can be used to treat 'disease-altered' biofilms and promote healthier oral biofilms, which may be useful for improving patient oral health.
Periodontal studies using transcriptomics, proteomics, and metabolomics encompass the collection of mRNA transcripts, proteins, and small‐molecule chemicals in the context of periodontal health and disease. The number of studies using these approaches has significantly increased in the last decade and they have provided new insight into the pathogenesis and host‐microbe interactions that define periodontal diseases. This review provides an overview of current molecular findings using ‐omic approaches that underlie periodontal disease, including modulation of the host immune response, tissue homeostasis, and complex metabolic processes of the host and the oral microbiome. Integration of these ‐omic approaches will broaden our perspective of the molecular mechanisms involved in periodontal disease, advancing and improving the diagnosis and treatment of various stages and forms of periodontal disease.
Periodontal disease is driven by dysbiosis in the oral microbiome, resulting in over-representation of species that induce the release of pro-inflammatory cytokines, chemokines, and tissue-remodeling matrix metalloproteinases (MMPs) in the periodontium. These chronic tissue-destructive inflammatory responses result in gradual loss of tooth-supporting alveolar bone. The oral spirochete Treponema denticola (T. denticola), is consistently found at significantly elevated levels in periodontal lesions. Host-expressed Toll-Like Receptor 2 (TLR2) senses a variety of bacterial ligands, including acylated lipopolysaccharides and lipoproteins. T. denticola dentilisin, a surface-expressed protease complex comprised of three lipoproteins has been implicated as a virulence factor in periodontal disease, primarily due to its proteolytic activity. While the role of acylated bacterial components in induction of inflammation is well-studied, little attention has been given to the potential role of the acylated nature of dentilisin. The purpose of this study was to test the hypothesis that T. denticola dentilisin activates a TLR2-dependent mechanism, leading to upregulation of tissue-destructive genes in periodontal tissue. RNA-sequencing of periodontal ligament cells challenged with T. denticola bacteria revealed significant upregulation of genes associated with extracellular matrix organization and degradation including potentially tissue-specific inducible MMPs that may play novel roles in modulating host immune responses that have yet to be characterized within the context of oral disease. The Gram-negative oral commensal, Veillonella parvula, failed to upregulate these same MMPs. Dentilisin-induced upregulation of MMPs was mediated via TLR2 and MyD88 activation, since knockdown of expression of either abrogated these effects. Challenge with purified dentilisin upregulated the same MMPs while a dentilisin-deficient T. denticola mutant had no effect. Finally, T. denticola-mediated activation of TLR2/MyD88 lead to the nuclear translocation of the transcription factor Sp1, which was shown to be a critical regulator of all T. denticola-dependent MMP expression. Taken together, these data suggest that T. denticola dentilisin stimulates tissue-destructive cellular processes in a TLR2/MyD88/Sp1-dependent fashion.
Bacteriocins are peptides produced by bacteria to inhibit the growth of other prokaryotes. Nisin is a bacteriocin widely used in the food industry and for biomedical applications. However, bacteriocins have some limitations, as they experience mechanisms of resistance, degradation by proteases, and suboptimal intracellular delivery. Combining bacteriocins with nanoscale drug delivery systems (nano-DDS) is an approach that can help overcome these limitations. Among the nano-DDS, solid lipid nanoparticles (SLN) have been described as promising candidates, because of their potential for industrial scale-up and lower toxicity. The objective of this proof-of-concept study was to investigate the use of nisin-loaded SLN (SLN-Nisin) as an antimicrobial and anticancer therapeutic. We show that SLN-Nisin can significantly inhibit the growth of the oral pathogen, Treponema denticola, disrupt oral biofilms, and decrease oral squamous cell carcinoma cell (OSCC) viability compared to free nisin. Further, analysis with scanning electron microscopy (SEM) revealed significant morphological changes in OSCC cells challenged with SLN-Nisin, compared to the empty-nanoparticle or free nisin, indicating that SLN-Nisin likely decreases cell viability by increasing pore formation. This data reveals that nano-DDS are robust tools that can enhance bacteriocin properties.
The periodontal complex consists of the periodontal ligament (PDL), alveolar bone, and cementum, which work together to turn mechanical load into biological responses that are responsible for maintaining a homeostatic environment. However oral microbes, under conditions of dysbiosis, may challenge the actin dynamic properties of the PDL in the context of periodontal disease. To study this process, we examined host-microbial interactions in the context of the periodontium via molecular and functional cell assays and showed that human PDL cell interactions with Treponema denticola induce actin depolymerization through a novel actin reorganization signaling mechanism. This actin reorganization mechanism and loss of cell adhesion is a pathological response characterized by an initial upregulation of RASA4 mRNA expression resulting in an increase in matrix metalloproteinase-2 activity. This mechanism is specific to the T. denticola effector protein, dentilisin, thereby uncovering a novel effect for Treponema denticola-mediated RASA4 transcriptional activation and actin depolymerization in primary human PDL cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.