Surface-rupturing earthquakes can produce fault displacements that abruptly alter the established course of rivers. Several notable examples of fault rupture–induced river avulsions (FIRAs) have been documented, yet the factors influencing these phenomena have not been examined in detail. Here, we use a recent case study from New Zealand’s 2016 Kaikōura earthquake to model the coseismic avulsion of a major braided river subjected to ~7-m vertical and ~4-m horizontal offset. We demonstrate that the salient characteristics of the avulsion can be reproduced with high accuracy by running a simple two-dimensional hydrodynamic model on synthetic (pre-earthquake) and “real” (post-earthquake) deformed lidar datasets. With adequate hydraulic inputs, deterministic and probabilistic hazard models can be precompiled for fault-river intersections to improve multihazard planning. Flood hazard models that ignore present and potential future fault deformation may underestimate the extent, frequency, and severity of inundation following large earthquakes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.